Example #1
0
def _validate_event(event: Any,
                    step_context: StepExecutionContext) -> SolidOutputUnion:
    if not isinstance(
            event,
        (
            DynamicOutput,
            Output,
            AssetMaterialization,
            Materialization,
            ExpectationResult,
            AssetObservation,
            DagsterEvent,
        ),
    ):
        raise DagsterInvariantViolationError((
            "Compute function for {described_node} yielded a value of type {type_} "
            "rather than an instance of Output, AssetMaterialization, or ExpectationResult."
            " Values yielded by {node_type}s must be wrapped in one of these types. If your "
            "{node_type} has a single output and yields no other events, you may want to use "
            "`return` instead of `yield` in the body of your {node_type} compute function. If "
            "you are already using `return`, and you expected to return a value of type "
            "{type_}, you may be inadvertently returning a generator rather than the value "
            "you expected.").format(
                described_node=step_context.describe_op(),
                type_=type(event),
                node_type=step_context.solid_def.node_type_str,
            ))

    return event
Example #2
0
def _type_check_output(
    step_context: StepExecutionContext,
    step_output_handle: StepOutputHandle,
    output: Any,
    version: Optional[str],
) -> Iterator[DagsterEvent]:
    check.inst_param(step_context, "step_context", StepExecutionContext)
    check.inst_param(output, "output", (Output, DynamicOutput))

    step_output = step_context.step.step_output_named(output.output_name)
    step_output_def = step_context.solid_def.output_def_named(step_output.name)

    dagster_type = step_output_def.dagster_type
    type_check_context = step_context.for_type(dagster_type)
    op_label = step_context.describe_op()
    output_type = type(output.value)

    with user_code_error_boundary(
            DagsterTypeCheckError,
            lambda:
        (f'Error occurred while type-checking output "{output.output_name}" of {op_label}, with '
         f"Python type {output_type} and Dagster type {dagster_type.display_name}"
         ),
            log_manager=type_check_context.log,
    ):
        type_check = do_type_check(type_check_context, dagster_type,
                                   output.value)

    yield DagsterEvent.step_output_event(
        step_context=step_context,
        step_output_data=StepOutputData(
            step_output_handle=step_output_handle,
            type_check_data=TypeCheckData(
                success=type_check.success,
                label=step_output_handle.output_name,
                description=type_check.description if type_check else None,
                metadata_entries=type_check.metadata_entries
                if type_check else [],
            ),
            version=version,
            metadata_entries=[
                entry for entry in output.metadata_entries
                if isinstance(entry, MetadataEntry)
            ],
        ),
    )

    if not type_check.success:
        raise DagsterTypeCheckDidNotPass(
            description=(
                f'Type check failed for step output "{output.output_name}" - '
                f'expected type "{dagster_type.display_name}". '
                f"Description: {type_check.description}"),
            metadata_entries=type_check.metadata_entries,
            dagster_type=dagster_type,
        )
Example #3
0
def _yield_compute_results(step_context: StepExecutionContext,
                           inputs: Dict[str, Any],
                           compute_fn: Callable) -> Iterator[SolidOutputUnion]:
    check.inst_param(step_context, "step_context", StepExecutionContext)

    context = SolidExecutionContext(step_context)
    user_event_generator = compute_fn(context, inputs)

    if isinstance(user_event_generator, Output):
        raise DagsterInvariantViolationError((
            "Compute function for {described_node} returned an Output rather than "
            "yielding it. The compute_fn of the {node_type} must yield "
            "its results").format(
                described_node=step_context.describe_op(),
                node_type=step_context.solid_def.node_type_str,
            ))

    if user_event_generator is None:
        return

    if inspect.isasyncgen(user_event_generator):
        user_event_generator = gen_from_async_gen(user_event_generator)

    op_label = step_context.describe_op()

    for event in iterate_with_context(
            lambda: solid_execution_error_boundary(
                DagsterExecutionStepExecutionError,
                msg_fn=lambda: f"Error occurred while executing {op_label}:",
                step_context=step_context,
                step_key=step_context.step.key,
                op_def_name=step_context.solid_def.name,
                op_name=step_context.solid.name,
            ),
            user_event_generator,
    ):
        if context.has_events():
            yield from context.consume_events()
        yield _validate_event(event, step_context)

    if context.has_events():
        yield from context.consume_events()
Example #4
0
def _trigger_hook(
    step_context: StepExecutionContext, step_event_list: List[DagsterEvent]
) -> Iterator[DagsterEvent]:
    """Trigger hooks and record hook's operatonal events"""
    hook_defs = step_context.pipeline_def.get_all_hooks_for_handle(step_context.solid_handle)
    # when the solid doesn't have a hook configured
    if hook_defs is None:
        return

    op_label = step_context.describe_op()

    # when there are multiple hooks set on a solid, the hooks will run sequentially for the solid.
    # * we will not able to execute hooks asynchronously until we drop python 2.
    for hook_def in hook_defs:
        hook_context = step_context.for_hook(hook_def)

        try:
            with user_code_error_boundary(
                HookExecutionError,
                lambda: f"Error occurred during the execution of hook_fn triggered for {op_label}",
                log_manager=hook_context.log,
            ):
                hook_execution_result = hook_def.hook_fn(hook_context, step_event_list)

        except HookExecutionError as hook_execution_error:
            # catch hook execution error and field a failure event instead of failing the pipeline run
            yield DagsterEvent.hook_errored(step_context, hook_execution_error)
            continue

        check.invariant(
            isinstance(hook_execution_result, HookExecutionResult),
            (
                "Error in hook {hook_name}: hook unexpectedly returned result {result} of "
                "type {type_}. Should be a HookExecutionResult"
            ).format(
                hook_name=hook_def.name,
                result=hook_execution_result,
                type_=type(hook_execution_result),
            ),
        )
        if hook_execution_result and hook_execution_result.is_skipped:
            # when the triggering condition didn't meet in the hook_fn, for instance,
            # a @success_hook decorated user-defined function won't run on a failed solid
            # but internally the hook_fn still runs, so we yield HOOK_SKIPPED event instead
            yield DagsterEvent.hook_skipped(step_context, hook_def)
        else:
            # hook_fn finishes successfully
            yield DagsterEvent.hook_completed(step_context, hook_def)
Example #5
0
def _type_checked_event_sequence_for_input(
    step_context: StepExecutionContext,
    input_name: str,
    input_value: Any,
) -> Iterator[DagsterEvent]:
    check.inst_param(step_context, "step_context", StepExecutionContext)
    check.str_param(input_name, "input_name")

    step_input = step_context.step.step_input_named(input_name)
    input_def = step_context.solid_def.input_def_named(step_input.name)

    check.invariant(
        input_def.name == input_name,
        f"InputDefinition name does not match, expected {input_name} got {input_def.name}",
    )

    dagster_type = input_def.dagster_type
    type_check_context = step_context.for_type(dagster_type)
    input_type = type(input_value)
    op_label = step_context.describe_op()

    with user_code_error_boundary(
            DagsterTypeCheckError,
            lambda:
        (f'Error occurred while type-checking input "{input_name}" of {op_label}, with Python '
         f"type {input_type} and Dagster type {dagster_type.display_name}"),
            log_manager=type_check_context.log,
    ):
        type_check = do_type_check(type_check_context, dagster_type,
                                   input_value)

    yield _create_step_input_event(step_context,
                                   input_name,
                                   type_check=type_check,
                                   success=type_check.success)

    if not type_check.success:
        raise DagsterTypeCheckDidNotPass(
            description=(f'Type check failed for step input "{input_name}" - '
                         f'expected type "{dagster_type.display_name}". '
                         f"Description: {type_check.description}"),
            metadata_entries=type_check.metadata_entries,
            dagster_type=dagster_type,
        )
Example #6
0
def _step_output_error_checked_user_event_sequence(
    step_context: StepExecutionContext, user_event_sequence: Iterator[SolidOutputUnion]
) -> Iterator[SolidOutputUnion]:
    """
    Process the event sequence to check for invariant violations in the event
    sequence related to Output events emitted from the compute_fn.

    This consumes and emits an event sequence.
    """
    check.inst_param(step_context, "step_context", StepExecutionContext)
    check.generator_param(user_event_sequence, "user_event_sequence")

    step = step_context.step
    op_label = step_context.describe_op()
    output_names = list([output_def.name for output_def in step.step_outputs])

    for user_event in user_event_sequence:
        if not isinstance(user_event, (Output, DynamicOutput)):
            yield user_event
            continue

        # do additional processing on Outputs
        output = user_event
        if not step.has_step_output(cast(str, output.output_name)):
            raise DagsterInvariantViolationError(
                f'Core compute for {op_label} returned an output "{output.output_name}" that does '
                f"not exist. The available outputs are {output_names}"
            )

        step_output = step.step_output_named(cast(str, output.output_name))
        output_def = step_context.pipeline_def.get_solid(step_output.solid_handle).output_def_named(
            step_output.name
        )

        if isinstance(output, Output):
            if step_context.has_seen_output(output.output_name):
                raise DagsterInvariantViolationError(
                    f'Compute for {op_label} returned an output "{output.output_name}" multiple '
                    "times"
                )

            if output_def.is_dynamic:
                raise DagsterInvariantViolationError(
                    f'Compute for {op_label} for output "{output.output_name}" defined as dynamic '
                    "must yield DynamicOutput, got Output."
                )

            step_context.observe_output(output.output_name)

            metadata = step_context.get_output_metadata(output.output_name)
            output = Output(
                value=output.value,
                output_name=output.output_name,
                metadata_entries=output.metadata_entries
                + normalize_metadata(cast(Dict[str, Any], metadata), []),
            )
        else:
            if not output_def.is_dynamic:
                raise DagsterInvariantViolationError(
                    f"Compute for {op_label} yielded a DynamicOutput, but did not use "
                    "DynamicOutputDefinition."
                )
            if step_context.has_seen_output(output.output_name, output.mapping_key):
                raise DagsterInvariantViolationError(
                    f"Compute for {op_label} yielded a DynamicOutput with mapping_key "
                    f'"{output.mapping_key}" multiple times.'
                )
            step_context.observe_output(output.output_name, output.mapping_key)
            metadata = step_context.get_output_metadata(
                output.output_name, mapping_key=output.mapping_key
            )
            output = DynamicOutput(
                value=output.value,
                output_name=output.output_name,
                metadata_entries=output.metadata_entries
                + normalize_metadata(cast(Dict[str, Any], metadata), []),
                mapping_key=output.mapping_key,
            )

        yield output

    for step_output in step.step_outputs:
        step_output_def = step_context.solid_def.output_def_named(step_output.name)
        if not step_context.has_seen_output(step_output_def.name) and not step_output_def.optional:
            if step_output_def.dagster_type.kind == DagsterTypeKind.NOTHING:
                step_context.log.info(
                    f'Emitting implicit Nothing for output "{step_output_def.name}" on {op_label}'
                )
                yield Output(output_name=step_output_def.name, value=None)
            elif not step_output_def.is_dynamic:
                raise DagsterStepOutputNotFoundError(
                    (
                        f"Core compute for {op_label} did not return an output for non-optional "
                        f'output "{step_output_def.name}"'
                    ),
                    step_key=step.key,
                    output_name=step_output_def.name,
                )