Example #1
0
    def setup_factor_graph(self):
        self.vecfac = dai.VecFactor()
        elem_map = {}
        for elem in self.variable_map:
            if elem.variable_name not in elem_map:
                elem_map[elem.variable_name] = {
                    elem.variable_type: elem.variable_id
                }
            else:
                elem_map[elem.variable_name][
                    elem.variable_type] = elem.variable_id
            #dai_var_map[elem.variable] = dai.Var(elem.variable, elem.dim)

        for cpt in sorted(self.cpt_map.keys(), key=lambda x: x.factor_id):
            cpt_value = self.cpt_map[cpt]
            var_list = dai.VarSet()
            v_list = list(cpt_value.variables)
            v_list.sort()
            for v_id in v_list:
                v = self.variable_map.get_variable_by_id(v_id)
                if v not in self.dai_variables:
                    self.dai_variables[v] = dai.Var(v.variable_id, v.dim)
                var_list.append(self.dai_variables[v])
            dai_factor = dai.Factor(var_list)
            for i, v in enumerate(cpt_value.cpt_linear_table()):
                dai_factor[i] = v
            self.vecfac.append(dai_factor)
Example #2
0
def build_single_node_factor(variables, fixed_variables, var_idx, f):
    '''
    copied from https://github.com/jkuck/mrf_nesting_ub/blob/master/Factor_Graphs/libdai_ising_model.py

    Inputs:
    - variables: (list of dai.Var) available variables.
    - fixed_variables: (dictionary)
        key: (int) 0 to N-1 variable index
        value: (int) -1 or 1, the value the variable is fixed to                 
    - var_idx: (int) variable index, 0 to N-1, for this factor's node
    - f: (float) local field at this node

    Outputs:
    - factor: (dai.Factor)
    '''

    clause_variables = dai.VarSet(variables[var_idx])
    factor = dai.Factor(clause_variables)
    if var_idx in fixed_variables:
        factor[0] = np.exp(fixed_variables[var_idx] *
                           f)  #the single fixed factor value
    else:
        factor[0] = np.exp(-f)  #corresponding to the node taking value -1
        factor[1] = np.exp(f)  #corresponding to the node taking value 1
    return factor
Example #3
0
def build_libdaiFactor_fromClause(clause, variables):
    '''
    
    Inputs:
    - clause (list of integers): literals in the clause
    - variables (list of dai.Var): list of all dai variables in the sat problem.
        variable i (where i can be in [1, N]) is stored at variables[i-1]

    Outputs:
    - factor (dai.Factor)
    '''
    dai_vars_list = [variables[abs(literal) - 1] for literal in clause]
    if len(clause) == 1:
        dai_vars = dai.VarSet(dai_vars_list[0])
    else:
        dai_vars = dai.VarSet(dai_vars_list[-1], dai_vars_list[-2])
        #have to reverse the order of the variables because of the way libdai
        #stores factor potentials with respect to variable ordering
        # see https://github.com/dbtsai/libDAI/blob/master/swig/example_sprinkler.py
        for var in reversed(dai_vars_list[:-2]):
            dai_vars.append(var)

    factor = dai.Factor(dai_vars)

    #Create a tensor for the 2^state_dimensions states
    state = np.zeros([2 for i in range(len(clause))])
    #Iterate over the 2^state_dimensions variable assignments and set those to 1 that satisfy the clause
    for indices in np.ndindex(state.shape):
        set_to_1 = False
        for dimension, index_val in enumerate(indices):
            if clause[dimension] > 0 and index_val == 1:
                set_to_1 = True
            elif clause[dimension] < 0 and index_val == 0:
                set_to_1 = True
        if set_to_1:
            state[indices] = 1
        else:
            state[indices] = 0

    for idx, state_val in enumerate(state.flatten()):
        factor[idx] = state_val
    return factor
Example #4
0
def build_pairwise_factor(variables, fixed_variables, var_idx1, var_idx2, c):
    '''
    copied from https://github.com/jkuck/mrf_nesting_ub/blob/master/Factor_Graphs/libdai_ising_model.py

    Inputs:
    - variables: (list of dai.Var) available variables. 
    - fixed_variables: (dictionary)
        key: (int) 0 to N-1 variable index
        value: (int) -1 or 1, the value the variable is fixed to                 
    - var_idx1: (int) variable index, 0 to N-1, for the first node in this factor
    - var_idx2: (int) variable index, 0 to N-1, for the second node in this factor
    - c: (float) coupling strength for this factor

    Outputs:
    - factor: (dai.Factor)
    '''

    clause_variables = dai.VarSet(variables[var_idx1], variables[var_idx2])
    factor = dai.Factor(clause_variables)
    #this 'pairwise' factor is over two fixed variables and has only 1 state
    if (var_idx1 in fixed_variables) and (var_idx2 in fixed_variables):
        factor[0] = np.exp(fixed_variables[var_idx1] *
                           fixed_variables[var_idx2] * c)
    #this 'pairwise' factor is over one fixed variable and one binary variable and has 2 states
    elif (var_idx1 in fixed_variables) and (var_idx2 not in fixed_variables):
        factor[0] = np.exp(-fixed_variables[var_idx1] * c)  # V2 = -1
        factor[1] = np.exp(fixed_variables[var_idx1] * c)  # V2 = -1
    #this 'pairwise' factor is over one fixed variable and one binary variable and has 2 states
    elif (var_idx1 not in fixed_variables) and (var_idx2 in fixed_variables):
        factor[0] = np.exp(-fixed_variables[var_idx2] * c)  # V1 = -1
        factor[1] = np.exp(fixed_variables[var_idx2] * c)  # V1 = -1
    #this pairwise factor is over two binary variables and has 4 states
    elif (var_idx1 not in fixed_variables) and (var_idx2
                                                not in fixed_variables):
        factor[0] = np.exp(c)  # V1 = -1, V2 = -1
        factor[1] = np.exp(-c)  # V1 = -1, V2 =  1
        factor[2] = np.exp(-c)  # V1 =  1, V2 = -1
        factor[3] = np.exp(c)  # V1 =  1, V2 =  1
    else:
        assert (False), "This shouldn't happen!!?"
    return factor
# Copyright (C) 2009  Joris Mooij  [joris dot mooij at libdai dot org]

# This example program illustrates how to construct a factorgraph
# by means of the sprinkler network example discussed at
# http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
# using the SWIG python wrapper of libDAI

import dai

C = dai.Var(0, 2)  # Define binary variable Cloudy (with label 0)
S = dai.Var(1, 2)  # Define binary variable Sprinkler (with label 1)
R = dai.Var(2, 2)  # Define binary variable Rain (with label 2)
W = dai.Var(3, 2)  # Define binary variable Wetgrass (with label 3)

# Define probability distribution for C
P_C = dai.Factor(C)
P_C[0] = 0.5  # C = 0
P_C[1] = 0.5  # C = 1

# Define conditional probability of S given C
P_S_given_C = dai.Factor(dai.VarSet(S, C))
P_S_given_C[0] = 0.5  # C = 0, S = 0
P_S_given_C[1] = 0.9  # C = 1, S = 0
P_S_given_C[2] = 0.5  # C = 0, S = 1
P_S_given_C[3] = 0.1  # C = 1, S = 1

# Define conditional probability of R given C
P_R_given_C = dai.Factor(dai.VarSet(R, C))
P_R_given_C[0] = 0.8  # C = 0, R = 0
P_R_given_C[1] = 0.2  # C = 1, R = 0
P_R_given_C[2] = 0.2  # C = 0, R = 1