Example #1
0
def eval_tcn_model(serialized_model, dataset):
    tcn_model = pickle.loads(serialized_model)
    df = pd.DataFrame.from_dict(dataset)
    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    train, val = ts.split_after(0.8)  #80% train, 20% val
    scaler = Scaler()
    ts = scaler.fit_transform(ts)
    val_transformed = scaler.transform(val)
    train_transformed = scaler.transform(train)
    backtest = tcn_model.historical_forecasts(
        series=ts,
        start=0.8,
        forecast_horizon=1,
        stride=1,
        retrain=False,
    )

    val_transformed = scaler.inverse_transform(val_transformed)
    backtest = scaler.inverse_transform(backtest)
    train_transformed = scaler.inverse_transform(train_transformed)
    scores = dict()
    scores['r2'] = r2_score(val_transformed, backtest[1:])
    scores['mase_score'] = mase(val_transformed, backtest[1:],
                                train_transformed)
    scores['mae_score'] = mae(val_transformed, backtest[1:])
    scores['rmse_score'] = np.sqrt(mse(val_transformed, backtest[1:]))
    try:
        scores['mape_score'] = mape(val_transformed, backtest[1:])
    except:
        scores[
            'mape_score'] = "Could not be calculated (Zero value in time series)"
    return scores
Example #2
0
def get_lstm_backtest(serialized_model, dataset):
    df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    scaler = Scaler()
    ts = scaler.fit_transform(ts)

    model = pickle.loads(serialized_model)

    backtest = model.historical_forecasts(series=ts,
                                          start=0.8,
                                          forecast_horizon=1,
                                          stride=1,
                                          retrain=False,
                                          verbose=False)
    backtest = scaler.inverse_transform(backtest[1:])
    ts = scaler.inverse_transform(ts)
    backtest.plot(label='LSTM Model', lw=3, c='orange')
Example #3
0
def get_tcn_backtest(serialized_model, dataset, topic):
    df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    scaler = Scaler()
    ts = scaler.fit_transform(ts)

    model = pickle.loads(serialized_model)

    backtest = model.historical_forecasts(series=ts,
                                          start=0.8,
                                          forecast_horizon=1,
                                          stride=1,
                                          retrain=False,
                                          verbose=False)
    backtest = scaler.inverse_transform(backtest[1:])
    ts = scaler.inverse_transform(ts)
    backtest.plot(label='TCN Model', lw=3, c='red')
    plt.title("{} Daily".format(topic))
    plt.xlabel("Date")
    plt.ylabel("Count")
Example #4
0
def plot_tcn_predictions(serialized_model, dataset):
    df = pd.DataFrame.from_dict(dataset)
    model = pickle.loads(serialized_model)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    scaler = Scaler()
    ts = scaler.fit_transform(ts)
    model.fit(series=ts)

    prediction = scaler.inverse_transform(
        model.predict(7))  #Predict a week ahead
    prediction.plot(label='TCN Prediction', lw=3, c='red')
Example #5
0
    def test_multi_ts_scaling(self):
        transformer1 = Scaler(MinMaxScaler(feature_range=(0, 2)))
        transformer2 = Scaler(StandardScaler())

        series_array = [self.series1, self.series2]

        series_array_tr1 = transformer1.fit_transform(series_array)
        series_array_tr2 = transformer2.fit_transform(series_array)

        for index in range(len(series_array)):
            self.assertAlmostEqual(min(series_array_tr1[index].values().flatten()), 0.)
            self.assertAlmostEqual(max(series_array_tr1[index].values().flatten()), 2.)
            self.assertAlmostEqual(np.mean(series_array_tr2[index].values().flatten()), 0.)
            self.assertAlmostEqual(np.std(series_array_tr2[index].values().flatten()), 1.)

        series_array_rec1 = transformer1.inverse_transform(series_array_tr1)
        series_array_rec2 = transformer2.inverse_transform(series_array_tr2)

        for index in range(len(series_array)):
            np.testing.assert_almost_equal(series_array_rec1[index].values().flatten(),
                                           series_array[index].values().flatten())
            np.testing.assert_almost_equal(series_array_rec2[index].values().flatten(),
                                           series_array[index].values().flatten())
Example #6
0
def get_tcn_predictions(model, dataset):
    df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    scaler = Scaler()
    ts = scaler.fit_transform(ts)
    model.fit(series=ts)
    prediction = scaler.inverse_transform(
        model.predict(7))  #Predict a week ahead
    prediction_json = json.loads(prediction.to_json())
    dates = prediction_json['index']
    counts = prediction_json['data']
    prediction_dataset = to_dataset(dates, counts)
    logging.debug(prediction_dataset)
    return prediction_dataset
Example #7
0
    def test_scaling(self):
        self.series3 = self.series1[:1]
        transformer1 = Scaler(MinMaxScaler(feature_range=(0, 2)))
        transformer2 = Scaler(StandardScaler())

        series1_tr1 = transformer1.fit_transform(self.series1)
        series1_tr2 = transformer2.fit_transform(self.series1)
        series3_tr2 = transformer2.transform(self.series3)

        # should comply with scaling constraints
        self.assertAlmostEqual(min(series1_tr1.values().flatten()), 0.)
        self.assertAlmostEqual(max(series1_tr1.values().flatten()), 2.)
        self.assertAlmostEqual(np.mean(series1_tr2.values().flatten()), 0.)
        self.assertAlmostEqual(np.std(series1_tr2.values().flatten()), 1.)

        # test inverse transform
        series1_recovered = transformer2.inverse_transform(series1_tr2)
        series3_recovered = transformer2.inverse_transform(series3_tr2)
        np.testing.assert_almost_equal(series1_recovered.values().flatten(), self.series1.values().flatten())
        self.assertEqual(series1_recovered.width, self.series1.width)
        self.assertEqual(series3_recovered, series1_recovered[:1])
Example #8
0

def eval_model(model):
    pred_series = model.predict(n=96)
    plt.figure(figsize=(8, 5))
    series_transformed.plot(label='actual')
    pred_series.plot(label='forecast')
    plt.title('MAPE: {:.2f}%'.format(mape(pred_series, val_transformed)))
    plt.legend()


eval_model(my_model)

best_model = RNNModel.load_from_checkpoint(model_name='Eq_RNN', best=True)
eval_model(best_model)

backtest_series = my_model.historical_forecasts(series_transformed,
                                                start=pd.Timestamp('20021231'),
                                                forecast_horizon=12,
                                                retrain=False,
                                                verbose=True)

plt.figure(figsize=(8, 5))
series_transformed.plot(label='actual')
backtest_series.plot(label='backtest')
plt.legend()
plt.title('Backtest, starting Jan 2003, 12-months horizon')
print('MAPE: {:.2f}%'.format(
    mape(transformer.inverse_transform(series_transformed),
         transformer.inverse_transform(backtest_series))))
Example #9
0
def get_tcn_model(dataset=None, plot=False, verbose=False):
    if (dataset is None):
        df = pd.read_csv("jeans_day.csv")
    else:
        df = pd.DataFrame.from_dict(dataset)
    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])

    train, val = ts.split_after(0.8)  #80% train, 20% val

    scaler = Scaler()
    train_transformed = scaler.fit_transform(train)
    val_transformed = scaler.transform(val)
    ts_transformed = scaler.transform(ts)

    params = dict()
    params['kernel_size'] = [4, 6]
    params['num_filters'] = [10]
    params['random_state'] = [0, 1]
    params['input_chunk_length'] = [14]
    params['output_chunk_length'] = [1]
    params['dilation_base'] = [2, 3]
    params['n_epochs'] = [100]
    params['dropout'] = [0]
    params['loss_fn'] = [MSELoss()]
    params['weight_norm'] = [True]
    tcn = TCNModel.gridsearch(parameters=params,
                              series=train_transformed,
                              val_series=val_transformed,
                              verbose=verbose,
                              metric=mse)

    params = tcn[1]
    tcn_model = tcn[0]
    tcn_model.fit(series=train_transformed)
    if (plot):
        backtest = tcn_model.historical_forecasts(series=ts_transformed,
                                                  start=0.8,
                                                  forecast_horizon=1,
                                                  stride=1,
                                                  retrain=False,
                                                  verbose=verbose)
        val = scaler.inverse_transform(val_transformed)
        backtest = scaler.inverse_transform(backtest)
        train = scaler.inverse_transform(train_transformed)
        print(scaler.inverse_transform(tcn_model.predict(7)))
        print("R2: {}".format(r2_score(val, backtest[1:], intersect=False)))
        print("MAPE: {}".format(mape(val, backtest[1:])))
        print("MASE: {}".format(mase(val, backtest[1:], train)))
        print("MAE: {}".format(mae(val, backtest[1:])))
        print("RMSE: {}".format(np.sqrt(mse(val, backtest[1:]))))
        backtest.plot(label='backtest')
        ts.plot(label='actual')
        plt.title("H&M Daily, TCN Model")
        plt.xlabel("Date")
        plt.ylabel("Count")
        plt.legend()
        plt.show()
    else:
        return [tcn_model, params]
Example #10
0
def get_lstm_model(dataset=None, plot=False, verbose=False):
    if (dataset is None):
        df = pd.read_csv("jeans_day.csv")
    else:
        df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])

    train, val = ts.split_after(0.8)

    scaler = Scaler()
    train_transformed = scaler.fit_transform(train)
    val_transformed = scaler.transform(val)
    ts_transformed = scaler.transform(ts)

    params = dict()
    params['model'] = ["LSTM"]
    params['hidden_size'] = [50, 75, 100]
    params['n_rnn_layers'] = [1]
    params['input_chunk_length'] = [14]
    params['output_chunk_length'] = [1]
    params['n_epochs'] = [100]
    params['dropout'] = [0]
    params['batch_size'] = [4, 6]
    params['random_state'] = [0, 1]
    params['loss_fn'] = [MSELoss()]

    lstm = RNNModel.gridsearch(parameters=params,
                               series=train_transformed,
                               val_series=val_transformed,
                               verbose=verbose,
                               metric=mse)

    params = lstm[1]
    lstm_model = lstm[0]

    lstm_model.fit(train_transformed, verbose=True)

    if (plot):
        backtest = lstm_model.historical_forecasts(series=ts_transformed,
                                                   start=0.8,
                                                   forecast_horizon=1,
                                                   stride=1,
                                                   retrain=False,
                                                   verbose=False)
        print(val)
        print(backtest[1:])
        print("R2: {}".format(
            r2_score(scaler.inverse_transform(val_transformed),
                     scaler.inverse_transform(backtest[1:]),
                     intersect=False)))
        print("MAPE: {}".format(
            mape(scaler.inverse_transform(val_transformed),
                 scaler.inverse_transform(backtest[1:]))))
        print("MASE: {}".format(
            mase(scaler.inverse_transform(val_transformed),
                 scaler.inverse_transform(backtest[1:]), train)))
        print("MAE: {}".format(
            mae(scaler.inverse_transform(val_transformed),
                scaler.inverse_transform(backtest[1:]))))
        scaler.inverse_transform(backtest).plot(label='backtest')
        scaler.inverse_transform(ts_transformed).plot(label='actual')
        plt.title("H&M Daily, LSTM Model")
        plt.xlabel("Date")
        plt.ylabel("Count")
        plt.legend()
        plt.show()
    else:
        return [lstm_model, params]