Example #1
0
    def _bin_sn_template(self, ageIdx):
        # Undo continuum in the following step in preprocessing.py
        if self.snidTemplate:
            wave, flux = self.wave, self.fluxes[
                ageIdx]  # self.snReadSpectrumFile.snid_template_undo_processing(self.snWave, self.snFluxes[ageIdx], self.splineInfo, ageIdx)
            binnedWave, binnedFlux, minIndex, maxIndex = self.preProcess.log_wavelength(
                wave, flux)
            binnedFluxNorm = normalise_spectrum(binnedFlux)
            binnedFluxNorm = zero_non_overlap_part(binnedFluxNorm,
                                                   minIndex,
                                                   maxIndex,
                                                   outerVal=0.5)
        else:
            wave, flux = self.wave, medfilt(self.flux, kernel_size=3)
            flux = normalise_spectrum(flux)
            binnedWave, binnedFlux, minIndex, maxIndex = self.preProcess.log_wavelength(
                wave, flux)
            contRemovedFlux, continuum = self.preProcess.continuum_removal(
                binnedWave, binnedFlux, self.numSplinePoints, minIndex,
                maxIndex)
            meanzero = self.preProcess.mean_zero(contRemovedFlux, minIndex,
                                                 maxIndex)
            apodized = self.preProcess.apodize(meanzero, minIndex, maxIndex)
            binnedFluxNorm = normalise_spectrum(apodized)
            binnedFluxNorm = zero_non_overlap_part(binnedFluxNorm,
                                                   minIndex,
                                                   maxIndex,
                                                   outerVal=0.5)

        return binnedWave, binnedFluxNorm, minIndex, maxIndex
Example #2
0
    def _bin_gal_template(self):
        wave, flux = self.readSpectrumFile.two_col_input_spectrum(self.wave, self.flux, z=0)
        flux = normalise_spectrum(flux)
        binnedWave, binnedFlux, minIndex, maxIndex = self.preProcess.log_wavelength(wave, flux)
        contRemovedFlux, continuum = self.preProcess.continuum_removal(binnedWave, binnedFlux, self.numSplinePoints, minIndex, maxIndex)
        newFlux = contRemovedFlux * continuum  # Spectral features weighted by the continuum
        fluxNorm = normalise_spectrum(newFlux)
        fluxNorm = zero_non_overlap_part(fluxNorm, minIndex, maxIndex, outerVal=0.5)

        return binnedWave, fluxNorm, minIndex, maxIndex
Example #3
0
    def continuum_removal(self, wave, flux, numSplinePoints, minIndex, maxIndex):
        flux = flux + 1  # Important to keep this as +1
        contRemovedFlux = np.copy(flux)

        splineFit = self.spline_fit(wave, flux, numSplinePoints, minIndex, maxIndex)
        contRemovedFlux[minIndex:maxIndex + 1] = flux[minIndex:maxIndex + 1] / splineFit[minIndex:maxIndex + 1]
        contRemovedFluxNorm = normalise_spectrum(contRemovedFlux - 1)
        contRemovedFluxNorm = zero_non_overlap_part(contRemovedFluxNorm, minIndex, maxIndex)

        return contRemovedFluxNorm, splineFit - 1
Example #4
0
    def template_data(self, snCoeff, galCoeff, z):
        wave, flux, minIndex, maxIndex = self.sn_plus_gal(snCoeff, galCoeff)
        wave, flux = self.processingTools.redshift_spectrum(wave, flux, z)
        flux = zero_non_overlap_part(flux, minIndex, maxIndex, outerVal=0)
        binnedWave, binnedFlux, minIndex, maxIndex = self.preProcess.log_wavelength(wave[minIndex:maxIndex+1], flux[minIndex:maxIndex+1])
        newFlux, continuum = self.preProcess.continuum_removal(binnedWave, binnedFlux, self.numSplinePoints, minIndex, maxIndex)
        meanZero = self.preProcess.mean_zero(newFlux, minIndex, maxIndex)
        apodized = self.preProcess.apodize(meanZero, minIndex, maxIndex)
        fluxNorm = normalise_spectrum(apodized)
        fluxNorm = zero_non_overlap_part(fluxNorm, minIndex, maxIndex, outerVal=0.5)
        # Could  median filter here, but trying without it now

        return binnedWave, fluxNorm, (minIndex, maxIndex)
Example #5
0
    def augment_data(self, flux, stdDevMean=0.05, stdDevStdDev=0.05):
        minIndex, maxIndex = ProcessingTools().min_max_index(flux, outerVal=0.5)
        noise = np.zeros(self.nw)
        stdDev = abs(np.random.normal(stdDevMean, stdDevStdDev)) # randomised standard deviation
        noise[minIndex:maxIndex] = np.random.normal(0, stdDev, maxIndex - minIndex)
        # # Add white noise to regions outside minIndex to maxIndex
        # noise[0:minIndex] = np.random.uniform(0.0, 1.0, minIndex)
        # noise[maxIndex:] = np.random.uniform(0.0, 1.0, self.nw-maxIndex)

        augmentedFlux = flux + noise
        augmentedFlux = normalise_spectrum(augmentedFlux)
        augmentedFlux = zero_non_overlap_part(augmentedFlux, minIndex, maxIndex, outerVal=0.5)

        return augmentedFlux
Example #6
0
    def redshifting(self):
        images = np.empty((0, int(self.nw)), np.float16)  # Number of pixels
        labels = np.empty((0, self.nLabels),
                          np.uint16)  # Number of labels (SN types)
        filenames = []
        typeNames = []
        redshifts = []
        minMaxIndexes = []
        readSpectra = ReadSpectra(self.w0, self.w1, self.nw, self.filename)

        #Undo it's previous redshift)
        wave, flux, minIndex, maxIndex, z = readSpectra.input_spectrum(
            self.z, self.smooth, self.minWave, self.maxWave)
        nonzeroflux = flux[minIndex:maxIndex + 1]
        newflux = normalise_spectrum(nonzeroflux)
        newflux2 = np.concatenate(
            (flux[0:minIndex], newflux, flux[maxIndex + 1:]))
        images = np.append(images, np.array([newflux2]),
                           axis=0)  # images.append(newflux2)
        filenames.append(str(self.filename) + "_" + str(-z))
        redshifts.append(-z)
        minMaxIndexes.append((minIndex, maxIndex))
        # # Add white noise to regions outside minIndex to maxIndex
        # noise = np.zeros(self.nw)
        # noise[0:minIndex] = np.random.uniform(0.0, 1.0, minIndex)
        # noise[maxIndex:] = np.random.uniform(0.0, 1.0, self.nw - maxIndex)
        #
        # augmentedFlux = flux + noise
        # augmentedFlux = normalise_spectrum(augmentedFlux)
        # augmentedFlux = zero_non_overlap_part(augmentedFlux, minIndex, maxIndex)

        inputImages = np.array(images)
        inputFilenames = np.array(filenames)
        inputRedshifts = np.array(redshifts)

        return inputImages, inputFilenames, inputRedshifts, self.typeNamesList, minMaxIndexes
Example #7
0
    preProcess = PreProcessSpectrum(3500, 10000, 1024)

    for gal in [
            'E', 'S0', 'Sa', 'Sb', 'Sc', 'SB1', 'SB2', 'SB3', 'SB4', 'SB5',
            'SB6'
    ]:
        sfReadSpectrum = ReadSpectrumFile(
            '../templates/superfit_templates/gal/%s' % gal, 3500, 10000, 1024)
        sfWave, sfFlux = sfReadSpectrum.file_extension()
        sfWave, sfFlux = sfReadSpectrum.two_col_input_spectrum(sfWave,
                                                               sfFlux,
                                                               z=0)
        # plt.plot(sfWave, sfFlux)
        sfWave, sfFlux, sfMinIndex, sfMaxIndex = preProcess.log_wavelength(
            sfWave, sfFlux)
        plt.plot(sfWave, normalise_spectrum(sfFlux))
        sfFlux, continuum = preProcess.continuum_removal(
            sfWave, sfFlux, 13, sfMinIndex, sfMaxIndex)
        # plt.plot(sfWave, continuum-1)

        snidReadSpectrum = ReadSpectrumFile(
            '../templates/bsnip_v7_snid_templates/kc%s.lnw' % gal, 3500, 10000,
            1024)
        snidSpectrum = snidReadSpectrum.file_extension()
        snidWave, snidFluxes, ncols, ages, ttype, splineInfo = snidSpectrum
        snidWave, snidFlux, snidMinIndex, snidMaxIndex = preProcess.log_wavelength(
            snidWave, snidFluxes[0])
        snidFlux = normalise_spectrum(snidFlux)
        fluxNorm = zero_non_overlap_part(snidFlux,
                                         snidMinIndex,
                                         snidMaxIndex,
Example #8
0
    def two_column_data(self, z, smooth, minWave, maxWave):
        if self.redshiftFromFile is True:
            self.wave, self.flux, z = self.spectrum
        else:
            self.wave, self.flux = self.spectrum
        self.flux = normalise_spectrum(self.flux)
        self.flux = limit_wavelength_range(self.wave, self.flux, minWave,
                                           maxWave)
        self.wDensity = (self.w1 -
                         self.w0) / self.nw  # Average wavelength spacing
        wavelengthDensity = (max(self.wave) - min(self.wave)) / len(self.wave)
        filterSize = int(
            self.wDensity / wavelengthDensity * smooth / 2) * 2 + 1
        preFiltered = medfilt(self.flux, kernel_size=filterSize)
        wave, flux = self.readSpectrumFile.two_col_input_spectrum(
            self.wave, preFiltered, z)
        if len(wave) < 2:
            sys.exit(
                "The redshifted spectrum of file: {0} is out of the classification range between {1} to {2} "
                "Angstroms. Please remove this file from classification or reduce the redshift before re-running "
                "the program.".format(self.filename, self.w0, self.w1))

        binnedwave, binnedflux, minIndex, maxIndex = self.preProcess.log_wavelength(
            wave, flux)
        newflux, continuum = self.preProcess.continuum_removal(
            binnedwave, binnedflux, self.numSplinePoints, minIndex, maxIndex)
        meanzero = self.preProcess.mean_zero(newflux, minIndex, maxIndex)
        apodized = self.preProcess.apodize(meanzero, minIndex, maxIndex)

        #filterSize = smooth * 2 + 1
        medianFiltered = medfilt(apodized, kernel_size=1)  #filterSize)
        fluxNorm = normalise_spectrum(medianFiltered)
        fluxNorm = zero_non_overlap_part(fluxNorm,
                                         minIndex,
                                         maxIndex,
                                         outerVal=0.5)

        # # PAPER PLOTS
        # import matplotlib.pyplot as plt
        #
        # plt.figure(num=1, figsize=(10, 6))
        # plt.plot(self.wave, self.flux, label='Raw', linewidth=1.3)
        # plt.plot(self.wave, preFiltered, label='Filtered', linewidth=1.3)
        # plt.ylim(-8, 8)
        # plt.xlabel('Wavelength ($\mathrm{\AA}$)', fontsize=13)
        # plt.ylabel('Relative Flux', fontsize=13)
        # plt.legend(fontsize=11, loc=1)
        # plt.xlim(2500, 9000)
        # plt.tight_layout()
        # plt.axhline(0, color='black', linewidth=0.5)
        # plt.savefig('/Users/danmuth/OneDrive/Documents/DASH/Paper/Figures/Filtering.png')
        #
        # plt.figure(num=2, figsize=(10, 6))
        # plt.plot(self.wave, preFiltered, label='Filtered', linewidth=1.3)
        # plt.plot(binnedwave, binnedflux, label='De-redshifted and log-wavelength binned', linewidth=1.3)
        # plt.xlabel('Wavelength ($\mathrm{\AA}$)', fontsize=13)
        # plt.ylabel('Relative Flux', fontsize=13)
        # plt.legend(fontsize=11, loc=1)
        # plt.xlim(2500, 9000)
        # plt.tight_layout()
        # plt.axhline(0, color='black', linewidth=0.5)
        # plt.savefig('/Users/danmuth/OneDrive/Documents/DASH/Paper/Figures/Deredshifting.png')
        #
        # plt.figure(num=3, figsize=(10, 6))
        # plt.plot(binnedwave, binnedflux, label='Log-wavelength binned', linewidth=1.3)
        # plt.plot(binnedwave, continuum, label='Continuum', linewidth=1.3)
        # plt.plot(binnedwave, newflux, label='Continuum subtracted', linewidth=1.3)
        # plt.xlabel('Wavelength ($\mathrm{\AA}$)', fontsize=13)
        # plt.ylabel('Relative Flux', fontsize=13)
        # plt.legend(fontsize=11, loc=1)
        # plt.xlim(2500, 9000)
        # plt.tight_layout()
        # plt.axhline(0, color='black', linewidth=0.5)
        # plt.savefig('/Users/danmuth/OneDrive/Documents/DASH/Paper/Figures/Continuum.png')
        #
        # plt.figure(num=4, figsize=(10, 6))
        # plt.plot(binnedwave, newflux, label='Continuum subtracted', linewidth=1.3)
        # plt.plot(binnedwave, apodized, label='Apodized', linewidth=1.3)
        # fluxNorm = (apodized - min(apodized)) / (max(apodized) - min(apodized))
        # plt.plot(binnedwave, fluxNorm, label='Normalised', linewidth=1.3)
        # plt.xlabel('Wavelength ($\mathrm{\AA}$)', fontsize=13)
        # plt.ylabel('Relative Flux', fontsize=13)
        # plt.legend(fontsize=11, loc=1)
        # plt.xlim(2500, 9000)
        # plt.tight_layout()
        # plt.axhline(0, color='black', linewidth=0.5)
        # plt.savefig('/Users/danmuth/OneDrive/Documents/DASH/Paper/Figures/Apodize.png')
        #
        # plt.show()

        return binnedwave, fluxNorm, minIndex, maxIndex, z


# fData = '/Users/danmuth/PycharmProjects/DASH/templates/OzDES_data/ATEL_9570_Run25/DES16C2ma_C2_combined_160926_v10_b00.dat'
# preData = PreProcessing(fData, 2500, 10000, 1024)
# waveData,fluxData,minIData,maxIData = preData.two_column_data(0.24, 5, 2500, 10000)
Example #9
0

if __name__ == '__main__':
    # Plot comparison of superfit galaxies and Bsnip galaxies
    from dash.array_tools import normalise_spectrum
    import matplotlib.pyplot as plt

    preProcess = PreProcessSpectrum(3500, 10000, 1024)

    for gal in ['E', 'S0', 'Sa', 'Sb', 'Sc', 'SB1', 'SB2', 'SB3', 'SB4', 'SB5', 'SB6']:
        sfReadSpectrum = ReadSpectrumFile('../templates/superfit_templates/gal/%s' % gal, 3500, 10000, 1024)
        sfWave, sfFlux = sfReadSpectrum.file_extension()
        sfWave, sfFlux = sfReadSpectrum.two_col_input_spectrum(sfWave, sfFlux, z=0)
        # plt.plot(sfWave, sfFlux)
        sfWave, sfFlux, sfMinIndex, sfMaxIndex = preProcess.log_wavelength(sfWave, sfFlux)
        plt.plot(sfWave, normalise_spectrum(sfFlux))
        sfFlux, continuum = preProcess.continuum_removal(sfWave, sfFlux, 13, sfMinIndex, sfMaxIndex)
        # plt.plot(sfWave, continuum-1)

        snidReadSpectrum = ReadSpectrumFile('../templates/bsnip_v7_snid_templates/kc%s.lnw' % gal, 3500, 10000, 1024)
        snidSpectrum = snidReadSpectrum.file_extension()
        snidWave, snidFluxes, ncols, ages, ttype, splineInfo = snidSpectrum
        snidWave, snidFlux, snidMinIndex, snidMaxIndex = preProcess.log_wavelength(snidWave, snidFluxes[0])
        snidFlux = normalise_spectrum(snidFlux)
        fluxNorm = zero_non_overlap_part(snidFlux, snidMinIndex, snidMaxIndex, outerVal=0.5)

        plt.title(gal)
        plt.plot(sfWave, sfFlux, label='superfit')
        # plt.plot(snidWave, snidFlux, label='BSNIP')
        plt.plot(sfWave, normalise_spectrum(sfFlux * (continuum - 1)), label='superfit_continuumMultiply')
        plt.legend()