def download(_): # For csv and html, the index must be removed to preserve the structure. if fmt in ["csv", "html", "excel"]: return dcc.send_data_frame(writer, filename, index=False) # For csv and html, the index must be removed to preserve the structure. if fmt in ["stata"]: a = dcc.send_data_frame(writer, filename, write_index=False) return a # For other formats, no modifications are needed. return dcc.send_data_frame(writer, filename)
def _export_table_data( _data_requested: list, table_data: list, table_columns: list, button_ids: list, table_ids: list, ) -> Callable: ctx = dash.callback_context.triggered[0] export_clicks = { id_value["table_id"]: n_clicks for id_value, n_clicks in zip(button_ids, _data_requested) } table_to_extract = [ x for x in export_clicks.keys() if x in ctx["prop_id"] ] if not table_to_extract or export_clicks[table_to_extract[0]] is None: raise PreventUpdate index = [x["table_id"] for x in table_ids].index(table_to_extract[0]) table_data = table_data[index] table_columns = [x["name"] for x in table_columns[index]] return dcc.send_data_frame( pd.DataFrame(data=table_data, columns=table_columns).to_excel, "VolumetricAnalysis.xlsx", index=False, )
def FUNCTION_DOWNLOAD_TABLE_COMPONENT_TAB1_BODY_CONTENT2(n, data): if n != 0 and data is not None: result = [ dcc.send_data_frame(pd.DataFrame.from_dict(data).to_excel, "DataTable.xlsx", sheet_name="Sheet1", index=False), 0 ] return result else: raise PreventUpdate
def func(n_clicks): global df2 df2 = pd.DataFrame() header_list = ['expected', 'Predicted', 'F1Score'] df2 = df2.reindex(columns=header_list) n = df.index[df['F1Score'] > float(0.8)] df2 = (df.iloc[n]) df2['Predicted'] = df2['expected'] return dcc.send_data_frame(df2.to_csv, "mydf_csv.csv")
def download_filtered_xlsx(n_clicks, jsonified_filtered_data): ## make sure that the button was clicked (we ignore the trigger event from altered data) changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0] if 'btn_filtered_xlsx' in changed_id: df_filter = pd.read_json(jsonified_filtered_data, orient='split') df_filter = df_filter.drop(columns = ['tree_dbh_vis']) return dcc.send_data_frame(df_filter.to_excel, "StreetTreesOfNYC_filtered.xlsx", sheet_name="Sheet_1") return
def download_graph_select_xlsx(n_clicks, tree_ids): ## make sure that the button was clicked (we ignore the trigger event from altered data) changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0] if 'btn_graph_select_xlsx' in changed_id and tree_ids: df_filter = df[df['tree_id'].isin(tree_ids)] df_filter = df_filter.drop(columns = ['tree_dbh_vis']) return dcc.send_data_frame(df_filter.to_excel, "StreetTreesOfNYC_graph_select.xlsx", sheet_name="Sheet_1") return
def download_csv(n_clicks, subspace_data, qoi): # Parse data results = jsonpickle.decode(subspace_data) subspace = results['subspace'] X_train = subspace.sample_points y_train = subspace.sample_outputs subdim = subspace.subspace_dimension W = subspace.get_subspace()[:, :subdim] u_train = X_train @ W # Build dataframe data = np.hstack([u_train, y_train.reshape(-1, 1)]) cols = ['active dim. %d' % j for j in range(subdim)] cols.append(qoi) df = pd.DataFrame(data=data, columns=cols) return dcc.send_data_frame(df.to_csv, "reduced_results.csv")
def func(n_clicks): return dcc.send_data_frame(df.to_excel, "mydf.xlxs", sheet_name="Sheet_name_1")
def func(n_clicks): return dcc.send_data_frame(df.to_csv, "mydf.csv")
def download(n_clicks): return dcc.send_data_frame(df.to_csv, 'mydf.csv')
def download_all_xlsx(n_clicks): df_download = df.drop(columns = ['tree_dbh_vis']) return dcc.send_data_frame(df_download.to_excel, "StreetTreesOfNYC.xlsx", sheet_name="Sheet_1")
def download_all_csv(n_clicks): df_download = df.drop(columns = ['tree_dbh_vis']) return dcc.send_data_frame(df_download.to_csv, "StreetTreesOfNYC.csv")