import dash import dash_core_components as dcc import dash_html_components as html app = dash.Dash(__name__) app.layout = html.Div(children=[ html.H1('Hello Dashboard'), html.Div("This is the sub heading"), dcc.Graph(id="Graph-a", figure={ 'data': [{ 'x': [1, 2, 3], 'y': [2, 5, 6], 'type': 'bar', 'name': 'bar 1' }, { 'x': [1, 2, 3], 'y': [4, 2, 1], 'type': 'bar', 'name': 'bar 2' }], 'layout': { 'title': 'Dash Visulization' } }), dcc.Graph(id="Graph-ac", figure={ 'data': [{ 'x': [1, 2, 3], 'y': [2, 5, 6], 'type': 'bar',
'display': 'inline', 'font-size': '2.65em', 'margin-left': '90px', 'margin-top': '30px', 'font-weight': 'bolder', 'font-family': 'Sans-Serif', 'color': "rgba(117, 117, 117, 0.95)" }), dcc.Tabs(id="tabs-example", value='tab-1-example', children=[ dcc.Tab(label='Overview', value='tab-1-example'), dcc.Tab(label='In/Out', value='tab-2-example'), dcc.Tab(label='Test', value='tab-3-example'), ]), dbc.Row(html.H1('')), html.Div(id='tabs-content-example') ]) @app.callback(Output('tabs-content-example', 'children'), [Input('tabs-example', 'value')]) def render_content(tab): if tab == 'tab-1-example': return html.Div([ dbc.Row([ dbc.Col([ html.H1('Overall balance'), simple_data_table.visual_simple_data_table(overview), ]),
from time import sleep from helper_functions import * # this statement imports all functions from your helper_functions file! # Run your helper function to clear out any io files left over from old runs # 1: check_for_and_del_io_files() # Make a Dash app! app = dash.Dash(__name__) # Define the layout. app.layout = html.Div([ # Section title html.H1("Section 1: Fetch & Display exchange rate historical data"), # Currency pair text input, within its own div. html.Div( [ "Input Currency: ", # Your text input object goes here: dcc.Input(id='input-currency', value='AUDCAD', type='text'), ], # Style it so that the submit button appears beside the input. style={'display': 'inline-block'}), # Submit button: html.Button('Submit', id='submit-button', n_clicks=0), # Line break html.Br(), # Div to hold the initial instructions and the updated info once submit is pressed
import dash import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State import json import re app = dash.Dash(__name__) app.layout = html.Div( dbc.Container( [ html.H1('关于Dash用户的调查'), html.Br(), html.P('1. 您的性别为:'), html.Hr(), dbc.RadioItems(id='gender', inline=True, options=[{ 'label': '男', 'value': '男' }, { 'label': '女', 'value': '女' }]), html.Br(), html.P('2. 您常用的编程语言有:'), html.Hr(), dbc.Checklist(id='programming-language', inline=True, options=[
y=df_changes_full['HINC00_PC'], mode='markers'),row=1,col=1) fig.add_trace(go.Scatter( x=df_changes_full['MHMVAL00_PC'], y=df_changes_full['HINC00_PC'], mode='markers'),row=1,col=2) fig.update_xaxes(title_text='% Change in Median Rent',range=[-150,400],row=1,col=1) fig.update_yaxes(title_text='% Change in Median Income',range=[-100,150],row=1,col=1) fig.update_xaxes(title_text='% Change in Median Home Value',range=[-150,400],row=1,col=2) fig.update_yaxes(title_text='% Change in Median Income',range=[-100,150],row=1,col=2) fig.update_layout(showlegend=False) app.layout = html.Div(children=[ html.H1( children="Analyzing Trends in Boston's Suffolk County", style={'textAlign': 'center' } ), html.Div(children=""" Welcome! In Section 1 of this dashboard, you will find data visualizations and analytical commentary regarding changes in socioeconomic, racial, and housing trends in Suffolk County, MA, which have been derived from the 2000 and 2010 decennial censuses. Further down, in Section 2, you'll find a data scientist's approach to grouping the county's census tracts by their shared features, and an interactive tool to learn more about each census tract. Enjoy! """), html.H3(children='''Section 1: Trends '''), html.H6(children='''Boston became more racially diverse '''), dcc.Graph( id='Fig1', figure={ 'data': [ go.Bar(name='White', y=["2000 Census","2010 Census"], x=[df_2000.NHWHT00.sum(),df_2010.nhwht10.sum()],orientation='h',),
layout = go.Layout( title = 'Adorable Creatures', # Graph title xaxis = dict(title = 'Type of animal'), # x-axis label yaxis = dict(title = 'Number in the zoo'), # y-axis label ) fig = go.Figure(data=data, layout=layout) ########### Display the chart app = dash.Dash() server = app.server app.layout = html.Div(children=[ html.H1('Petting Zoo'), dcc.Graph( id='figure-1', figure=fig ), html.A('Code on Github', href='https://github.com/austinlasseter/zoo-animals-dash'), html.Br(), html.A('HTML Color Codes', href='https://htmlcolorcodes.com'), ] ) if __name__ == '__main__': app.run_server()
def dash_task(): """ There is only only one task to do, a web app with: 1. Some nice title 2. One visualization placeholder for dataset visualization a. A dropdown to allow me to select which dataset I want to see (iris, video_game and life_expectancy) b. Two other dropdowns for me to choose what column to put in x and what column to put in y of the visualization c. Another dropdown for me to choose what type of graph I want (see examples in file a_) (at least 3 choices of graphs) d. Feel free to change the structure of the dataset if you prefer (e.g. change life_expectancy so that there is one column of "year", one for "country" and one for "value") 4. A https://dash-bootstrap-components.opensource.faculty.ai/docs/components/card/ with the number of rows being showed on the above graph 5. Another visualization with: a. It will containing the figure created in the tasks in a_, b_ or c_ related to plotly's figures b. Add a dropdown for me to choose among 3 (or more if you wish) different graphs from a_, b_ or c_ (choose the ones you like) c. In this visualization, if I select data in the visualization, update some text in the page (can be a new bootstrap card with text inside) with the number of values selected. (see https://dash.plotly.com/interactive-graphing for examples) """ # Step-0 : Creating a new Dash Application Object with BootStrap properties app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) iris_df = read_dataset(Path("..", "..", "iris.csv")) iris_columns = list(iris_df.columns) video_game_df = read_dataset(Path("..", "..", "ratings_Video_Games.csv")) video_game_columns = list(video_game_df.columns) life_expectancy_df = process_life_expectancy_dataset() life_expectancy_columns = list(life_expectancy_df.columns) # Step-1 : Giving a Nice Title app.layout = dbc.Container([ html.Center([ html.H1(children='Dash Plots', style={'color': 'brown'}), html.Hr(), ]), dbc.Row([ dbc.Col( dbc.FormGroup([ # Creating a dropdown for selecting the required dataset dbc.Label("Choose Your Dataset"), dcc.Dropdown(id='dataset_selector_dropdown', options=[{ 'label': 'Iris Dataset', 'value': 'iris' }, { 'label': 'Video Game Dataset', 'value': 'video_game' }, { 'label': 'Life Expectancy Dataset', 'value': 'life_expectancy' }], value='iris', style={'width': '250px'}) ])), # Creating a dropdown for selecting X axis. Initially, it will be blank. # On Selecting a dataset from the aforementioned dropdown, the options will be # seen through the callback function : "setXandY()" declared below dbc.Col( dbc.FormGroup([ dbc.Label("Select Column for X axis"), dcc.Dropdown(id='x_selector_dropdown', style={'width': '160px'}) ])), # Creating a dropdown for selecting Y axis. Initially, it will be blank. # On Selecting a dataset from the aforementioned dropdown, the options will be # seen through the callback function : "setXandY()" declared below dbc.Col( dbc.FormGroup([ dbc.Label("Select Column for Y axis"), dcc.Dropdown(id='y_selector_dropdown', style={'width': '160px'}) ])), # Creating a dropdown for selecting the type of graph to be plotted dbc.Col( dbc.FormGroup([ dbc.Label("Choose Graph Type"), dcc.Dropdown(id='graph_type_selector_dropdown', options=[{ 'label': 'Scatter Plot', 'value': 'scatter' }, { 'label': 'Histogram Plot', 'value': 'histogram' }, { 'label': 'Polar Plot', 'value': 'polar' }], value='scatter', style={'width': '160px'}) ])), ]), # Creating a button on click of which the Dash program will display the required plot dbc.Row( dbc.Button('Generate Plot', id='button_for_generating_plot', style={'width': '100%'}, color='primary')), # Creating the first graph component html.Center([dbc.Col(dcc.Graph(id='first_plot'))]), # Creating the card component for counting the scanned rows html.Center([ dbc.Col( dbc.Card([ dbc.CardBody([ html.H4(children=['Number of rows read : 0'], id='card_text') ]) ], style={"width": "18rem"})) ]), html.Br(), # Creating a dropdown for selecting one visualization out of 3 from a_, b_ or c_ files dbc.FormGroup([ dbc.Label("Choose a Visualization"), dcc.Dropdown(id='second_plot_selector_dropdown', options=[{ 'label': 'Pie Chart From File A', 'value': 'a_pie' }, { 'label': 'Polar Scatter Plot From File B', 'value': 'b_polar' }, { 'label': 'Cluster Plot From File C', 'value': 'c_clusters' }], value='c_clusters', style={'width': '100%'}) ]), html.Br(), html.Center([dcc.Graph(id='second_plot')]), # Creating another Card for viewing the selected data from the second plot html.Center([ dbc.Col( dbc.Card([ dbc.CardBody([ html.H4(children=['No Data Selected'], id='second_card_text') ]) ], style={"width": "18rem"})) ]) ]) # The callback function below sets the X and Y dropdown options on selection of dataset selection @app.callback([ Output('x_selector_dropdown', 'options'), Output('x_selector_dropdown', 'value'), Output('y_selector_dropdown', 'options'), Output('y_selector_dropdown', 'value') ], [Input('dataset_selector_dropdown', 'value')]) def setXandY(dropdownValue): required_options = [] default_value = '' if dropdownValue == 'iris': for data_column in iris_columns: temp_dict = {} temp_dict['label'] = data_column temp_dict['value'] = data_column required_options.append(temp_dict) default_value = iris_columns[0] elif dropdownValue == 'video_game': for data_column in video_game_columns: temp_dict = {} temp_dict['label'] = data_column temp_dict['value'] = data_column required_options.append(temp_dict) default_value = video_game_columns[0] elif dropdownValue == 'life_expectancy': for data_column in life_expectancy_columns: temp_dict = {} temp_dict['label'] = data_column temp_dict['value'] = data_column required_options.append(temp_dict) default_value = life_expectancy_columns[0] return required_options, default_value, required_options, default_value # Callback function for plotting the first plot and updating the first card @app.callback( [Output('first_plot', 'figure'), Output('card_text', 'children')], [ Input('button_for_generating_plot', 'n_clicks'), ], [ State('dataset_selector_dropdown', 'value'), State('x_selector_dropdown', 'value'), State('y_selector_dropdown', 'value'), State('graph_type_selector_dropdown', 'value') ]) def plot_first_graph(n_clicks, dataset_name, x_column, y_column, graph_type): if n_clicks == None: return go.Figure(), 'Rows Scanned : 0' if dataset_name == 'iris': df = iris_df rows_count = len(iris_df) elif dataset_name == 'video_game': df = video_game_df rows_count = len(video_game_df) elif dataset_name == 'life_expectancy': df = life_expectancy_df rows_count = len(life_expectancy_df) else: df = None categorical_cols = get_text_categorical_columns(df) if x_column in categorical_cols: le = generate_label_encoder(df[x_column]) df = replace_with_label_encoder(df, x_column, le) if y_column in categorical_cols: le = generate_label_encoder(df[y_column]) df = replace_with_label_encoder(df, y_column, le) if graph_type == 'scatter': first_figure = px.scatter(df, x=x_column, y=y_column) elif graph_type == 'histogram': first_figure = px.histogram(df, x=x_column, color=y_column) elif graph_type == 'polar': first_figure = px.scatter_polar(df, r=x_column, theta=y_column) else: first_figure = None final_rows_call = 'Rows Read : ' + str(rows_count) return first_figure, final_rows_call # Callback function for plotting the second plot @app.callback(Output('second_plot', 'figure'), [Input('second_plot_selector_dropdown', 'value')]) def generate_second_plot(plot_name): if plot_name == 'a_pie': x = np.random.rand(50) * np.random.randint(-10, 10) y = np.random.rand(50) * np.random.randint(-10, 10) df = pd.DataFrame(dict(x=x, y=y, z=x + y)) fig = plotly_pie_chart(df) elif plot_name == 'b_polar': fig = plotly_polar_scatterplot_chart() elif plot_name == 'c_clusters': fig = plotly_interactivity() else: fig = None return fig # Callback function for updating the second card. Please Select Lasso Select and then perform selection via dragging @app.callback(Output('second_card_text', 'children'), Input('second_plot', 'selectedData')) def act_on_selecting_data(selectedData): print(json.dumps(selectedData, indent=2)) print(type(selectedData)) return json.dumps(selectedData, indent=2) return app
import numpy as np import pandas as pd import string import requests from requests.exceptions import HTTPError global SONGS_DF SONGS_DF = pd.DataFrame( columns=["Song title", "Song release year", "Artist", "Number of words"]) app = dash.Dash() server = app.server app.layout = html.Div([ html.H1('Lyric count by artist information - Fergus McLellan'), html.Div( 'Enter artist names, separated using a comma, e.g. Blur,Twenty one pilots:' ), dcc.Input(id='artists-in', value='', style={'fontSize': 28}), html.Button(id='submit-button', n_clicks=0, children='Submit', style={'fontSize': 28}), html.P(html.Br()), html.Div(id='submitted-artists-out'), dash_table.DataTable( id='mean_table', style_header={'backgroundColor': 'rgb(30, 30, 30)'}, style_cell={ 'backgroundColor': 'rgb(00, 00, 128)',
# -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go import plotly.plotly as py import pandas as pd # initialize Dash app and initialize the static folder app = dash.Dash(__name__, static_folder='static') df = pd.read_csv('static/flavors_of_cacao.csv') # set layout of the page app.layout = html.Div(children=[ # set the page heading html.H1(children='Exercise 2'), # set the description underneath the heading html.Div(children=''' A heat map showing the quality of chocolate by the country of origin and the % cacao. '''), # append the visualization to the page dcc.Graph( id='example-graph', figure={ # configure the data 'data': [ go.Heatmap(x=df['BroadBeanOrigin'], z=df['Rating'], y=df['CocoaPercent'],
import plotly.graph_objects as go import numpy as np from loader.load_openflight_data import load_locations, load_routes_join app = dash.Dash('Openflights') loc_df = load_locations('./data/airports.dat') route_df = load_routes_join('./data/routes.dat', loc_df) floor_marks = list(range(0, len(route_df), 500)) ceil_marks = list(range(500, len(route_df), 500)) + [len(route_df) - 1] slider_marks = {f: f'{f} to {c}' for f, c in zip(floor_marks, ceil_marks)} app.layout = html.Div(children=[ html.H1(children='Openflights data'), dcc.Graph(id='world-map-graph'), dcc.Slider(id='flights-slider', min=100, max=len(route_df), value=500, marks=slider_marks, step=None) ]) @app.callback(Output('world-map-graph', 'figure'), [Input('flights-slider', 'value')]) def update_world_map(num_routes): fig = go.Figure()
import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc import plotly.graph_objs as go from dash.dependencies import State, Output, Input from app import app layout = html.Div( [ dbc.Row([ dbc.Col([ dbc.Card( [ dbc.CardBody([ html.Div([ dbc.Row([ dbc.Col([html.H1("SMA")], width={"offset": 5}), ]), dbc.Row([ dbc.Col([ html.Br(), html.Div([ html. A("A simple moving average (SMA) is an arithmetic moving average calculated by adding recent prices and then dividing that figure by the number of time periods in the calculation average. For example, one could add the closing price of a security for a number of time periods and then divide this total by that same number of periods. Short-term averages respond quickly to changes in the price of the underlying security, while long-term averages are slower to react.", style={"font-size": "20px"}) ]), ]), ]), html.Br(), ]), ]),
########################################################################################## # BUILD APP ########################################################################################## external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) ########################################################################################## # BUILD LAYOUT ########################################################################################## # Header layout part page_title = html.H1( children="Simple example of Plotly Dashboard based on Iris data set", style={"text-align": "center"}, ) page_header = html.Div( children="(Powered by Dash: A web application framework for Python)", style={"text-align": "center"}, ) # Correlation layout part correlation_title = html.Div( children="Finding correlation", style={"text-align": "center"}, ) correlation_x_axis_dropdown = dcc.Dropdown( id="correlation-x-axis-dropdown", options=[{ "label": column.capitalize().replace("_", " "),
# Build Dashboard # --------------- app = dash.Dash() # Initialize dash application # Reference externally hosted CSS file my_css_url = "https://codepen.io/madjazz/pen/awxxQK.css" app.css.append_css({ "external_url": my_css_url }) # Define layout app.layout = html.Div(children=[ html.H1(children="Simple Dashboard Example", style={"height": "100px", "text-align": "center"}), html.H2(children="Plots", style={"text-align": "center"}), # From core components use the dropdown component dcc.Dropdown( id="dropdown-graph", options=[ {"label": "Insulin vs BMI", "value": "insulin_bmi"}, {"label": "Glucose vs BMI", "value": "glucose_bmi"}, {"label": "Age vs BMI", "value": "age_bmi"} ], value="insulin_bmi" ), # Set position of plot
soql_url = ('https://data.cityofnewyork.us/resource/nwxe-4ae8.json?' +\ '$select=steward,health,boroname,spc_common,count(tree_id)' +\ #'&$where=boroname=\'Bronx\'' +\ '&$group=steward,health,boroname,spc_common').replace(' ', '%20') df = pd.read_json(soql_url) df['percentage'] = df['count_tree_id'] / df['count_tree_id'].sum() ind1 = df['boroname'].unique() ind2 = df['spc_common'].unique() #ind3 = df['steward'].unique() app.layout = html.Div([ html.Div([ html.H1("Arborist App"), dcc.Markdown( """What proportion of trees are in good, fair, or poor health according to the ‘health’ variable? """ ), html.Div([ dcc.Dropdown(id='xaxis-column', options=[{ 'label': i, 'value': i } for i in ind1], value='Manhattan'), ], style={ 'width': '48%', 'display': 'inline-block' }),
# -*- coding: utf-8 -*- import dash import dash_core_components import dash_html_components import numpy t = numpy.linspace(0, 2 * numpy.pi, 100) x = 10 * (2 * numpy.sin(t) - numpy.sin(2 * t)) y = 10 * (2 * numpy.cos(t) - numpy.cos(2 * t)) app = dash.Dash() app.layout = dash_html_components.Div(children=[ dash_html_components.H1(children='Hello! Dash love you! '), dash_core_components.Graph(id='heart-curve', figure={ 'data': [ { 'x': x, 'y': y, 'type': 'Scatter', 'name': 'Heart' }, ], 'layout': { 'title': 'Heart Curve' } }) ]) if __name__ == '__main__':
''' ### Dash apps can be written in Markdown. Dash uses the [CommonMark](http://commonmark.org/) specification of Markdown.\ Check out their [60 Second Markdown Tutorial](http://commonmark.org/help/) if this is your first introduction to Markdown! ''' app.layout = html.Div(children=[ html.H1( children='AI meets Reserved Seat', style={ 'textAlign': 'center', 'color': colors['text'], 'margin': '5px', 'font-family': 'Century Gothic' } ), html.Div(children='NRG, Marketing Science', style={ 'textAlign': 'center', 'color': colors['text'], 'margin': '5px', 'font-family': 'Century Gothic' }), dcc.Markdown(children = markdown_text), html.Div([
{"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"}) # A JSON-like dictionary to use as CSS style information colors = {'background': '#111111', 'text': '#7FDBFF'} # Define the layout, which is a tree of components: # a div which contains a heading, a div and a graph # Components are described entirely through their keyword attributes app.layout = html.Div( style={'backgroundColor': colors['background']}, children=[ # Generates <h1>Wow, a Python web app!</h1> # 'children' is always 1st attribute; can omit, e.g. html.H1('Hello Dash') html.H1(children='Wow, a Python web app!', style={ 'textAlign': 'center', 'color': colors['text'] }), html.Div(children='Here is a test bar chart to appreciate.', style={ 'textAlign': 'center', 'color': colors['text'] }), dcc.Graph(id='example-graph', figure={ 'data': [ { 'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'Melbourne'
import dash_core_components as dcc import dash_html_components as html from server import app layout = html.Div([ html.H1(children='Macro Dashboards', style={ 'textAlign': 'center', 'padding-top': '30px', 'color': '#0064ad', 'font-weight': 'bold' }), dcc.Link(children=html.Button('Sort by Data Type'), href='/datatype', style={ 'display': 'flex', 'justify-content': 'center', 'margin-bottom': '30px', }), dcc.Link(children=html.Button('Choose Country'), href='/callback', style={ 'display': 'flex', 'justify-content': 'center', 'margin-bottom': '30px', }), ])
def dash_callback_example(): """ Here is a more complex example that uses callbacks. With this example, I believe you will suddenly perceive why dash (and webapps) are so much better for visual analysis. """ app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) df = pd.DataFrame({ "Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"], "Amount": [4, 1, 2, 2, 4, 5], "City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"] }) app.layout = dbc.Container([ html.H1(children='Hello Dash'), html.Div(children='Dash: A web application framework for Python.'), html.Hr(), dbc.FormGroup([ dbc.Label("Choose Dataset"), dcc.Dropdown(id="dropdown", value=1, options=[{ "label": "First Data", "value": 1 }, { "label": "Second Data", "value": 2 }]), ]), dbc.FormGroup([ dbc.Label(id='slider-value'), dcc.Slider(id="slider", min=1, max=10, step=0.5, value=1), ]), dbc.Button('Run Callback', id='example-button', color='primary', style={'margin-bottom': '1em'}, block=True), dbc.Row([ dbc.Col( dcc.Graph(id='example-graph') ), # Not including fig here because it will be generated with the callback ]) ]) @app.callback( # See documentation or tutorial to see how to use this Output( 'example-graph', 'figure' ), # Outputs is what you wish to update with the callback, which in this case is the figure [ Input('example-button', 'n_clicks') ], # Use inputs to define when this callback is called, and read from the values in the inputs as parameters in the method [ State( 'dropdown', 'value' ), # Use states to read values from the interface, but values only in states will not trigger the callback when changed State('slider', 'value') ] ) # For example, here if you change the slider, this method will not be called, it will only be called when you click the button def update_figure(n_clicks, dropdown_value, slider_value): df2 = df[:] df2.Amount = df2.Amount * slider_value if dropdown_value == 1: return px.bar(df2, x="Fruit", y="Amount", color="City", barmode="group") else: return px.line(df2, x="City", y="Amount", color="Fruit") @app.callback(Output('slider-value', 'children'), [Input('slider', 'value')]) def update_slider_value(slider): return f'Multiplier: {slider}' # You can also use app.callback to get selection from any of the plotly graphs, including tables and maps, and update anything you wish. # See some examples at https://dash-gallery.plotly.host/Portal/ return app
neighbor_list = group_df.get_index() #cluster result cluster_result = Cluster.cluster_result() neighbors, clusters = [], [] for key, value in cluster_result.items(): neighbors.append(key) clusters.append(str(value)) app = dash.Dash() app.layout = html.Div([ html.H1('The Nextdoor', style={ 'color': 'rgb(192,72,81)', 'margin-left': '550px', 'font-size': '40px', 'font-family': 'arial' }), html.H2('Get to know the neighborhood!', style={ 'color': 'rgb(192,72,81)', 'margin-left': '520px' }), #sort neighborhood based on selected feature html.Div([ html.H2('Sort Neighborhood by feature ', style={ 'color': 'rgb(23,114,180)', 'margin-left': '120px' }),
href="https://github.com/dilipjagannathan/MovieProject", className="git-code", style={"verticalAlign": "middle"}, ), ], ), ], style={"textAlign": "center"}, ) layout = html.Div( [ html.H1( "Movie Dashboard", style={ "textAlign": "center", "color": "white", #"background": "yellow" }, ), input, dcc.Tabs( id="all-tabs-inline", className="all-tabs-inline", value="about-tab", children=[ dcc.Tab( label="About", value="about-tab", style=tab_style, selected_style=tab_selected_style, ),
print(dcc.__version__) # 0.6.0 or above is required external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.config.suppress_callback_exceptions = True app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ], style= {'textAlign': 'center', 'fontSize': 20}) ###INDEX PAGE index_page = html.Div([ html.H1('Data Mining Project'), html.H3('Aira Domingo'), dcc.Link('Load Dataset', href='/page-1'), html.Br(), dcc.Link('Explore Data', href='/page-2'), html.Br(), dcc.Link('Models', href='/page-3') ]) ###PAGE 1 page_1_layout = html.Div([ html.H2('Load Dataset'), dcc.Upload(
app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.config.suppress_callback_exceptions = True colors = { 'background': 'white', 'background1': 'light blue', 'text': 'black' } app.layout = html.Div(style={'backgroundColor': colors['background']}, children=[ html.H1( children='Movie Recommendation: Get your next watch here!', style={ 'textAlign': 'center', 'color': colors['text'] } ), html.Div( children='This is a movie recommendation webpage. Get your next watch just by entering either your ' 'favorite movie. You are also free to enter your most liked genre or year of watch and we will ' 'find the most relevant movies and/or tv series that will absolutely delight you! So, lets go!!', style={ 'textAlign': 'center', 'color': colors['text'] } ), dcc.Tabs(id="tabs-example", value='tab-1', children=[ dcc.Tab(label='Personal Choice Based Recommendation', value='tab-1'),
for text in df.columns[:-2]] # skip last 2 columns # Read in geo-json file # read in Detroit neighborhood geojson. with open("../data/raw/detroit_geo.json") as json_file: detroit_geo = json.load(json_file) #------------------------------------------------- # DASH APP # Background color colors = {'background': '#006e99', 'text': '#7FDBFF'} # App layout (Dash components all go inside layout) app.layout = html.Div( #style={"backgroundColor": colors["background"], "pad": 0}, children=[ # Title of the web-app html.H1("Detroit City", style={"text-align": "center"}), html.H2("Police Attention Level Needed", style={"text-align": "center"}), # Date picker html.Div([ dcc.DatePickerSingle(id="dt_pick_single", date=dt(2020, 11, 13), min_date_allowed=dt(2020, 11, 7), max_date_allowed=dt(2020, 11, 13)) ], style={"padding-left": "25%"}), # Element to show selected date as text html.H2( html.Div(id="output_container",
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output app = dash.Dash() app.layout = html.Div(children=[ dcc.Input(id='input', value='Enter com o número', type='text'), html.Div(id='output'), html.H1("DashBoard"), dcc.Graph( id="example", figure={ 'data': [{ 'x': [1, 2, 3, 4, 5], 'y': [5, 4, 7, 4, 8], 'type': 'line', 'name': 'Trucks' }, { 'x': [1, 2, 3, 4, 5], 'y': [5, 4, 7, 4, 8], 'type': 'bar', 'name': 'Ships' }], 'layout': { 'title': 'Basic Dashboard' } }, ) ])
app = dash.Dash() app.scripts.config.serve_locally = True X = deque(maxlen=1) Y = deque(maxlen=1) X.append(1) Y.append(1) newtime = deque(maxlen=0) df = pd.read_csv('CleanData.csv') #Reads CSV Data app.layout = html.Div(children=[ html.H1(children='the best f*****g data analyzer ever', style={ 'textAlign': 'center' }), dcc.Graph(id='sens1'), # html.H2(id = 'time_counter', # children='''NO TIME YET''', # style={ # 'textAlign': 'center' # }), html.Div(children=rpd.my_Player( id = 'video_player', url = 'http://127.0.0.1:8080/testvideo.mp4', width = 900, height = 720, controls = True, playing = False, seekTo = 0,
def render_content(tab): if tab == 'tab-1-example': return html.Div([ dbc.Row([ dbc.Col([ html.H1('Overall balance'), simple_data_table.visual_simple_data_table(overview), ]), dbc.Col([ html.H1('Balance over time'), dbc.Row( multi_line_chart.visual_dropdown( 'my-dropdown', balance_chart['Cash location'].unique())), dbc.Row(multi_line_chart.visual_graph()) ]), ]), dbc.Row([ dbc.Col([ html.H1('Asset allocation'), bar_chart.visual_bar_chart(balance_over_all, 'allocation', 'amount') ]), dbc.Col([ html.H1('Stock overview'), pie_chart.visual_pie_chart(stocks, 'name', 'value') ]), ]), ]), elif tab == 'tab-2-example': return dbc.Container([ dbc.Row([ dbc.Col(dbc.Card([ dbc.CardHeader("Filters"), dbc.CardBody([ html.H1('Transactions'), smart_data_table.visual_datepicker( 'date-picker-range', transactions.date), html.H1(''), html.H1('In/Out'), multiple_stacked_bar_chart.visual_datepicker( 'date-picker-in_out', in_out.date_trunc), ]) ], outline=True), width='auto'), dbc.Col([ dbc.Row(html.H1('In-Out bar chart')), dbc.Row(multiple_stacked_bar_chart.visual_graph()), dbc.Row(html.H1('Transactions')), dbc.Row(smart_data_table.visual_smart_data_table()) ]), dbc.Col(html.H1(''), width='auto') ]), dbc.Row(html.H1('')) ], fluid=True)
avg_rating = df['Ratings (Averag)'] beer_name = df['beer name'] ##### charts avg_rating = go.Bar(x=beer_name, y=avg_rating) ########### Initiate the app external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.title = tabtitle ########### Set up the layout app.layout = html.Div(children=[ html.H1(myheading), html.H3(mysubheading), dash_table.DataTable( id='table', columns=[{ "name": i, "id": i } for i in df.columns], data=df.to_dict('records'), ), dcc.Graph(id='beer_compare', figure=beer_fig), html.A('Code on Github', href=githublink), html.Br(), html.A("Data Source", href=sourceurl), html.Br(), html.A("Plotly Dash", href='https://plot.ly/python/pie-charts/')
import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from app import app layout = html.Div([ html.H1('Gun Violence in America, 2014-2018'), dcc.Link('Go Home', href='/home'), ])
dbc.DropdownMenuItem("Entry 2"), dbc.DropdownMenuItem(divider=True), dbc.DropdownMenuItem("Entry 3"), ], ), ], brand="Fit for Future Funds", brand_href="#", sticky="top", ) body = dbc.Container( [ dbc.Row( [ html.H1("Fit for Future Funds") ], justify="center", no_gutters=True ), dbc.Row( [ dbc.Alert(html.H3("Transparent fund selection based on accurate sustainability ratings"), color="success"), ], justify="center", no_gutters=True ), dbc.Row( [ dbc.Col( [