Example #1
0
def describe_numeric_1d(series, **kwargs):
    """Compute summary statistics of a numerical (`TYPE_NUM`) variable (a Series).

    Also create histograms (mini an full) of its distribution.

    Parameters
    ----------
    series : Series
        The variable to describe.

    Returns
    -------
    Series
        The description of the variable as a Series with index being stats keys.
    """
    # Format a number as a percentage. For example 0.25 will be turned to 25%.
    _percentile_format = "{:.0%}"
    stats = dict()

    stats['type'] = base.TYPE_NUM
    stats['mean'] = series.mean()
    stats['std'] = series.std()
    stats['variance'] = series.var()
    stats['min'] = series.min()
    stats['max'] = series.max()
    stats['range'] = stats['max'] - stats['min']
    # TODO: Remove this "lazy" operation
    _series_no_na = series.dropna()
    for percentile in np.array([0.05, 0.25, 0.5, 0.75, 0.95]):
        # The dropna() is a workaround for https://github.com/pydata/pandas/issues/13098
        stats[_percentile_format.format(percentile)] = _series_no_na.quantile(
            percentile)
    stats['iqr'] = stats['75%'] - stats['25%']
    stats['kurtosis'] = delayed(sp.stats.kurtosis)(series)
    stats['skewness'] = delayed(float)(dask_stats.skew(series.to_dask_array()))
    stats['sum'] = series.sum()
    stats['mad'] = series.sub(series.mean()).abs().mean()
    # removed conditional for testing (no purpose was seen)
    # stats['cv'] = stats['std'] / stats['mean'] if stats['mean'] else np.NaN
    stats['cv'] = stats['std'] / stats['mean']
    stats['n_zeros'] = (series.size - delayed(np.count_nonzero)(series))
    stats['p_zeros'] = stats['n_zeros'] * 1.0 / series.size
    # Histograms
    # TODO: optimize histogram and mini_histogram calls (a big overlap in computation)
    stats['histogram'] = histogram(series, **kwargs)
    stats['mini_histogram'] = mini_histogram(series, **kwargs)

    return stats
Example #2
0
def process(sensorId):
    print("Processing %s" % sensorId)
    df = dd.read_csv('data-processed/%s/*.csv' % (sensorId),
                     usecols=["W1", "W2", "W3"])
    x = (df.W1.abs() + df.W2.abs() + df.W3.abs())
    m, std, kurtosis, skew, minimum, maximum = [
        x.mean(),
        x.std(),
        stats.kurtosis(x),
        stats.skew(x),
        x.min(),
        x.max()
    ]
    result = dask.compute(m, std, kurtosis, skew, minimum, maximum)
    print(result)
    return result
Example #3
0
def calc_cont_col(srs: dd.Series, bins: int) -> Dict[str, Any]:
    """
    Computations for a numerical column in plot(df)

    Parameters
    ----------
    srs
        srs over which to compute the barchart and insights
    bins
        number of bins in the bar chart
    """
    # dictionary of data for the histogram and related insights
    data: Dict[str, Any] = {}

    ## if cfg.insight.missing_enable:
    data["npres"] = srs.shape[0]

    ## if cfg.insight.infinity_enable:
    data["ninf"] = srs.isin({np.inf, -np.inf}).sum()

    # remove infinite values
    srs = srs[~srs.isin({np.inf, -np.inf})]

    ## if cfg.hist_enable or config.insight.uniform_enable or cfg.insight.normal_enable:
    ## bins = cfg.hist_bins
    data["hist"] = da.histogram(srs, bins=bins, range=[srs.min(), srs.max()])

    ## if cfg.insight.uniform_enable:
    data["chisq"] = chisquare(data["hist"][0])

    ## if cfg.insight.normal_enable
    data["norm"] = normaltest(data["hist"][0])

    ## if cfg.insight.negative_enable:
    data["nneg"] = (srs < 0).sum()

    ## if cfg.insight.skew_enabled:
    data["skew"] = skew(srs)

    ## if cfg.insight.unique_enabled:
    data["nuniq"] = srs.nunique()

    ## if cfg.insight.zero_enabled:
    data["nzero"] = (srs == 0).sum()

    return data
Example #4
0
def cont_comps(srs: dd.Series, cfg: Config) -> Dict[str, Any]:
    """
    All computations required for plot(df, Continuous)
    """
    # pylint: disable=too-many-branches
    data: Dict[str, Any] = {}

    if cfg.stats.enable or cfg.hist.enable:
        data["nrows"] = srs.shape[0]  # total rows
    srs = srs.dropna()
    if cfg.stats.enable:
        data["npres"] = srs.shape[0]  # number of present (not null) values
    srs = srs[~srs.isin({np.inf, -np.inf})]  # remove infinite values
    if cfg.hist.enable or cfg.qqnorm.enable and cfg.insight.enable:
        data["hist"] = da.histogram(srs, cfg.hist.bins, (srs.min(), srs.max()))
        if cfg.insight.enable:
            data["norm"] = normaltest(data["hist"][0])
    if cfg.hist.enable and cfg.insight.enable:
        data["chisq"] = chisquare(data["hist"][0])
    # compute only the required amount of quantiles
    if cfg.qqnorm.enable:
        data["qntls"] = srs.quantile(np.linspace(0.01, 0.99, 99))
    elif cfg.stats.enable:
        data["qntls"] = srs.quantile([0.05, 0.25, 0.5, 0.75, 0.95])
    elif cfg.box.enable:
        data["qntls"] = srs.quantile([0.25, 0.5, 0.75])
    if cfg.stats.enable or cfg.hist.enable and cfg.insight.enable:
        data["skew"] = skew(srs)
    if cfg.stats.enable or cfg.qqnorm.enable:
        data["mean"] = srs.mean()
        data["std"] = srs.std()
    if cfg.stats.enable:
        data["min"] = srs.min()
        data["max"] = srs.max()
        data["nreals"] = srs.shape[0]
        data["nzero"] = (srs == 0).sum()
        data["nneg"] = (srs < 0).sum()
        data["kurt"] = kurtosis(srs)
        data["mem_use"] = srs.memory_usage(deep=True)
    # compute the density histogram
    if cfg.kde.enable:
        # To avoid the singular matrix problem, gaussian_kde needs a non-zero std.
        if not math.isclose(
                dask.compute(data["min"])[0],
                dask.compute(data["max"])[0]):
            data["dens"] = da.histogram(srs,
                                        cfg.kde.bins, (srs.min(), srs.max()),
                                        density=True)
            # gaussian kernel density estimate
            data["kde"] = gaussian_kde(
                srs.map_partitions(lambda x: x.sample(min(1000, x.shape[0])),
                                   meta=srs))
        else:
            data["kde"] = None
    if cfg.box.enable:
        data.update(_calc_box(srs, data["qntls"], cfg))
    if cfg.value_table.enable:
        value_counts = srs.value_counts(sort=False)
        if cfg.stats.enable:
            data["nuniq"] = value_counts.shape[0]
        data["value_table"] = value_counts.nlargest(cfg.value_table.ngroups)
    elif cfg.stats.enable:
        data["nuniq"] = srs.nunique_approx()

    return data
Example #5
0
def cont_comps(srs: dd.Series, bins: int) -> Dict[str, Any]:
    """
    This function aggregates all of the computations required for plot(df, Continuous())

    Parameters
    ----------
    srs
        one numerical column
    bins
        the number of bins in the histogram
    """

    data: Dict[str, Any] = {}

    ## if cfg.stats_enable or cfg.hist_enable or
    # calculate the total number of rows then drop the missing values
    data["nrows"] = srs.shape[0]
    srs = srs.dropna()
    ## if cfg.stats_enable
    # number of not null (present) values
    data["npres"] = srs.shape[0]
    # remove infinite values
    srs = srs[~srs.isin({np.inf, -np.inf})]

    # shared computations
    ## if cfg.stats_enable or cfg.hist_enable or cfg.qqplot_enable and cfg.insights_enable:
    data["min"], data["max"] = srs.min(), srs.max()
    ## if cfg.hist_enable or cfg.qqplot_enable and cfg.ingsights_enable:
    data["hist"] = da.histogram(srs,
                                bins=bins,
                                range=[data["min"], data["max"]])
    ## if cfg.insights_enable and (cfg.qqplot_enable or cfg.hist_enable):
    data["norm"] = normaltest(data["hist"][0])
    ## if cfg.qqplot_enable
    data["qntls"] = srs.quantile(np.linspace(0.01, 0.99, 99))
    ## elif cfg.stats_enable
    ## data["qntls"] = srs.quantile([0.05, 0.25, 0.5, 0.75, 0.95])
    ## elif cfg.boxplot_enable
    ## data["qntls"] = srs.quantile([0.25, 0.5, 0.75])
    ## if cfg.stats_enable or cfg.hist_enable and cfg.insights_enable:
    data["skew"] = skew(srs)

    # if cfg.stats_enable
    data["nuniq"] = srs.nunique()
    data["nreals"] = srs.shape[0]
    data["nzero"] = (srs == 0).sum()
    data["nneg"] = (srs < 0).sum()
    data["mean"] = srs.mean()
    data["std"] = srs.std()
    data["kurt"] = kurtosis(srs)
    data["mem_use"] = srs.memory_usage(deep=True)

    ## if cfg.hist_enable and cfg.insight_enable
    data["chisq"] = chisquare(data["hist"][0])

    # compute the density histogram
    data["dens"] = da.histogram(srs,
                                bins=bins,
                                range=[data["min"], data["max"]],
                                density=True)
    # gaussian kernel density estimate
    data["kde"] = gaussian_kde(
        srs.map_partitions(lambda x: x.sample(min(1000, x.shape[0])),
                           meta=srs))

    ## if cfg.box_enable
    data.update(calc_box(srs, data["qntls"]))

    return data