Example #1
0
def test_regressor(output, client, listen_port):
    X, y, w, dX, dy, dw = _create_data(objective='regression', output=output)

    dask_regressor = dlgbm.DaskLGBMRegressor(time_out=5,
                                             local_listen_port=listen_port,
                                             seed=42,
                                             num_leaves=10,
                                             tree='data')
    dask_regressor = dask_regressor.fit(dX,
                                        dy,
                                        client=client,
                                        sample_weight=dw)
    p1 = dask_regressor.predict(dX)
    if output != 'dataframe':
        s1 = r2_score(dy, p1)
    p1 = p1.compute()

    local_regressor = lightgbm.LGBMRegressor(seed=42, num_leaves=10)
    local_regressor.fit(X, y, sample_weight=w)
    s2 = local_regressor.score(X, y)
    p2 = local_regressor.predict(X)

    # Scores should be the same
    if output != 'dataframe':
        assert_eq(s1, s2, atol=.01)

    # Predictions should be roughly the same
    assert_eq(y, p1, rtol=1., atol=100.)
    assert_eq(y, p2, rtol=1., atol=50.)

    client.close()
Example #2
0
def test_regressor_local_predict(client, listen_port):  # noqa
    X, y, w, dX, dy, dw = _create_data('regression', output='array')

    a = dlgbm.LGBMRegressor(local_listen_port=listen_port, seed=42)
    a = a.fit(dX, dy, sample_weight=dw, client=client)
    p1 = a.predict(dX)
    p2 = a.to_local().predict(X)
    s1 = r2_score(dy, p1)
    p1 = p1.compute()
    s2 = a.to_local().score(X, y)
    print(s1)

    # Predictions and scores should be the same
    assert_eq(p1, p2)
    np.isclose(s1, s2)
Example #3
0
def test_regressor_local_predict(loop, listen_port):
    with cluster() as (s, [a, b]):
        with Client(s['address'], loop=loop):
            X, y, w, dX, dy, dw = _create_data('regression', output="array")

            a = dlgbm.LGBMRegressor(local_listen_port=listen_port, seed=42)
            a = a.fit(dX, dy, sample_weight=dw)
            p1 = a.predict(dX)
            p2 = a.to_local().predict(X)
            s1 = r2_score(dy, p1)
            p1 = p1.compute()
            s2 = a.to_local().score(X, y)
            print(s1)

            # Predictions and scores should be the same
            assert_eq(p1, p2)
            np.isclose(s1, s2)
Example #4
0
def test_regressor_local_predict(client, listen_port):
    X, y, w, dX, dy, dw = _create_data('regression', output='array')

    dask_regressor = dlgbm.DaskLGBMRegressor(local_listen_port=listen_port,
                                             seed=42)
    dask_regressor = dask_regressor.fit(dX,
                                        dy,
                                        sample_weight=dw,
                                        client=client)
    p1 = dask_regressor.predict(dX)
    p2 = dask_regressor.to_local().predict(X)
    s1 = r2_score(dy, p1)
    p1 = p1.compute()
    s2 = dask_regressor.to_local().score(X, y)

    # Predictions and scores should be the same
    assert_eq(p1, p2)
    assert_eq(s1, s2)
Example #5
0
def test_regressor(output, client, listen_port):  # noqa
    X, y, w, dX, dy, dw = _create_data('regression', output=output)

    a = dlgbm.LGBMRegressor(time_out=5, local_listen_port=listen_port, seed=42)
    a = a.fit(dX, dy, client=client, sample_weight=dw)
    p1 = a.predict(dX, client=client)
    if output != 'dataframe':
        s1 = r2_score(dy, p1)
    p1 = p1.compute()

    b = lightgbm.LGBMRegressor(seed=42)
    b.fit(X, y, sample_weight=w)
    s2 = b.score(X, y)
    p2 = b.predict(X)

    # Scores should be the same
    if output != 'dataframe':
        assert_eq(s1, s2, atol=.01)

    # Predictions should be roughly the same
    assert_eq(y, p1, rtol=1., atol=50.)
    assert_eq(y, p2, rtol=1., atol=50.)
Example #6
0
def test_regressor_local_predict(client, listen_port):
    X, y, _, dX, dy, dw = _create_data('regression', output='array')

    dask_regressor = dlgbm.DaskLGBMRegressor(local_listen_port=listen_port,
                                             random_state=42,
                                             n_estimators=10,
                                             num_leaves=10,
                                             tree_type='data')
    dask_regressor = dask_regressor.fit(dX,
                                        dy,
                                        sample_weight=dw,
                                        client=client)
    p1 = dask_regressor.predict(dX)
    p2 = dask_regressor.to_local().predict(X)
    s1 = r2_score(dy, p1)
    p1 = p1.compute()
    s2 = dask_regressor.to_local().score(X, y)

    # Predictions and scores should be the same
    assert_eq(p1, p2)
    assert_eq(s1, s2)

    client.close()