Example #1
0
    def __getitem__(self, idx):
        lr, hr, lr2, hr2, filename = self._load_file(idx)

        lr, hr, lr2, hr2 = self._get_patch(lr, hr, lr2, hr2)
        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        lr2, hr2 = common.set_channel([lr2, hr2], self.args.n_colors)
        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        lr_tensor2, hr_tensor2 = common.np2Tensor([lr2, hr2], self.args.rgb_range)
        return lr_tensor, hr_tensor, lr_tensor2, hr_tensor2, filename
Example #2
0
    def __getitem__(self, idx):
        try:
            lr, hr, filename = self._load_file(idx)
        except:
            print(filename)

        lr, hr = common.set_channel(lr, hr, n_channels=self.args.n_colors)
        pair = self.get_patch(lr, hr)
        pair = common.set_channel(*pair, n_channels=self.args.n_colors)
        pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)

        return pair_t[0], pair_t[1], filename
Example #3
0
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = misc.imread(self.filelist[idx])
        lr = common.set_channel([lr], self.args.n_colors)[0]
        lr_tensor = common.np2Tensor([lr], self.args.rgb_range)[0]

        hr_filename = os.path.split(self.hr_filelist[idx])[-1]
        hr_filename, _ = os.path.splitext(hr_filename)
        hr = misc.imread(self.hr_filelist[idx])
        hr = common.set_channel([hr], self.args.n_colors)[0]
        hr_tensor = common.np2Tensor([hr], self.args.rgb_range)[0]

        return lr_tensor, hr_tensor, filename
Example #4
0
 def __getitem__(self, idx):
     if self.train:
         lr, hr, filename = self._load_file(idx)
         lr, hr = self.get_patch(*[lr, hr])
         lr, hr = common.set_channel(lr, hr, n_channels=self.args.n_colors)
         lr_tensor, hr_tensor = common.np2Tensor(
             lr, hr, rgb_range=self.args.rgb_range)
         return lr_tensor, hr_tensor, filename
     else:
         lr, hr, filename = self._load_file(idx)
         lr, hr = self.get_patch(*[lr, hr])
         lr, hr = common.set_channel(lr, hr, n_channels=self.args.n_colors)
         lr_tensor, hr_tensor = common.np2Tensor(
             lr, hr, rgb_range=self.args.rgb_range)
     return lr_tensor, hr_tensor, filename
Example #5
0
    def __getitem__(self, idx):

        filename = os.path.splitext(os.path.basename(self.filelist[idx]))[0]

        if '.hdr' in self.filelist[idx]:
            lr = cv2.imread(self.filelist[idx], cv2.IMREAD_ANYDEPTH)
            lr = cv2.cvtColor(lr, cv2.COLOR_BGR2RGB)
            #self.args.max_val = np.mean(lr)
            #lr = lr*(255/self.args.max_val)
            #breakpoint()
            #lr = lr/100000
            self.args.non_hdr = False
            self.args.rgb_range = np.max(lr)
        else:
            lr = imageio.imread(self.filelist[idx])
            self.args.non_hdr = True
            #self.args.rgb_range = 255
            #breakpoint()

        lr, = common.set_channel(lr, n_channels=self.args.n_colors)

        lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)

        #print(lr_t, "is of type", type(lr))
        #breakpoint()

        return lr_t, -1, filename
Example #6
0
    def __getitem__(self, idx):
        scale = self.scale[self.idx_scale]
        if self.train:
            new_idx = random.randint(0, self.end)
            lr, hr, filename = self._load_file(new_idx)
            while lr.shape[0] < self.flags.batch_image_size or lr.shape[
                    1] < self.flags.batch_image_size:
                new_idx = random.randint(0, self.end)
                lr, hr, filename = self._load_file(new_idx)
        else:
            lr, hr, filename = self._load_file(idx)

        if self.train:
            hr, lr = common.random_crop(hr, lr, self.flags.batch_image_size,
                                        scale)  # LR patch size
            lr, hr = common.random_flip_and_rotate(im1=lr, im2=hr)
        lr = util.resize_image_by_pil(hr, 1 / scale)
        # lr, hr = self.get_patch(lr, hr)

        lr, hr = common.set_channel(lr, hr, n_channels=self.flags.channels)
        lr_tensor, hr_tensor = torch.from_numpy(
            lr / 255. - 0.5).float(), torch.from_numpy(hr / 255. -
                                                       0.5).float()
        # lr_tensor, hr_tensor = common.np2Tensor(
        #     lr, hr, rgb_range=self.flags.rgb_range
        # )

        lr_tensor, hr_tensor = lr_tensor.view(1, self.flags.batch_image_size, self.flags.batch_image_size, self.flags.channels).squeeze(),\
                               hr_tensor.view(1, self.flags.batch_image_size*scale, self.flags.batch_image_size*scale, self.flags.channels).squeeze()

        return lr_tensor, hr_tensor, filename
Example #7
0
    def __getitem__(self, idx):

        img_input, img_tar = self._load_file(idx)
        img_input, img_tar = common.set_channel([img_input, img_tar], self.args.n_colors)
        img_input, img_tar = self._get_patch(img_input, img_tar)
        input_tensor, tar_tensor = common.np2Tensor([img_input, img_tar], self.args.rgb_range)
        return input_tensor, tar_tensor
Example #8
0
    def __getitem__(self, idx):
        filename = os.path.splitext(os.path.basename(self.filelist[idx]))[0]
        lr = imageio.imread(self.filelist[idx])
        lr, = common.set_channel(lr, n_channels=self.args.n_colors)
        lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)

        return lr_t, -1, filename
Example #9
0
    def __getitem__(self, idx):
        #lr, hr, filename = self._load_file(idx)
        if (idx % 100 ) > 2 | (idx % 100) < 99:
            lr1, hr1, _  = self._load_file(idx-2)
            lr2, hr2, _  = self._load_file(idx-1)
            lr3, hr3, filename = self._load_file(idx)
            lr4, hr4, _  = self._load_file(idx+1)
            lr5, hr5, _  = self._load_file(idx+2)
        else:
            lr1, hr1, _  = self._load_file(idx)
            lr2, hr2, _  = self._load_file(idx)
            lr3, hr3, filename = self._load_file(idx)
            lr4, hr4, _  = self._load_file(idx)
            lr5, hr5, _  = self._load_file(idx)

        lr1, hr1 = self._get_patch(lr1, hr1)
        lr2, hr2 = self._get_patch(lr2, hr2)
        lr3, hr3 = self._get_patch(lr3, hr3)
        lr4, hr4 = self._get_patch(lr4, hr4)
        lr5, hr5 = self._get_patch(lr5, hr5)
        
        lr = np.concatenate((lr1, lr2, lr3, lr4, lr5),axis=-1)
        hr = hr3
        #lr, hr = self._get_patch(lr, hr)
        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        return lr_tensor, hr_tensor, filename
Example #10
0
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = imageio.imread(self.filelist[idx])
        lr = common.set_channel([lr], self.args.n_colors)[0]

        return common.np2Tensor([lr], self.args.rgb_range)[0], -1, filename
Example #11
0
    def __getitem__(self, idx):
        # lr, hr, filename = self._load_file(idx)
        # pair = self.get_patch(lr, hr)
        # pair = common.set_channel(*pair, n_channels=self.args.n_colors)
        # pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)
        #
        # return pair_t[0], pair_t[1], filename
        lr, hr, filename = self._load_file(idx)
        # print('1',lr.shape, np.max(lr))
        # print(lr,hr)
        lr = lr[:,:,0]
        lr, hr = self.get_patch(lr, hr)
        lr = np.expand_dims(lr,2)
        # print('2',lr.shape, np.max(lr))

        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        #lr, hr = self.get_patch(lr,hr)
        # print(lr,hr)
        # print('3',lr.shape, np.max(lr))
        #print(lr.shape,hr.shape)
        #exit(0)
        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        # print(lr_tensor,hr_tensor)
        # exit(0)
        return lr_tensor, hr_tensor, filename
Example #12
0
    def __getitem__(self, idx):
        lr, hr, videoname, filename, offset = self._load_file(idx)
        pair = self.get_patch(lr, hr, offset)
        pair = common.set_channel(*pair, n_channels=self.args.n_colors)
        pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)

        return pair_t[0], pair_t[1], videoname, filename
Example #13
0
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename_hr = os.path.join(
            '../HR/{}/x{}'.format(self.args.testset, str(self.args.scale[0])),
            self.imnamelist[idx].replace('LRBI', 'HR'))
        filename, _ = os.path.splitext(filename)

        hr = misc.imread(filename_hr)
        hr = common.set_channel([hr], self.args.n_colors)[0]

        lr = misc.imread(self.filelist[idx])
        lr = common.set_channel([lr], self.args.n_colors)[0]

        return common.np2Tensor([lr],
                                self.args.rgb_range)[0], common.np2Tensor(
                                    [hr], self.args.rgb_range)[0], filename
Example #14
0
    def __getitem__(self, idx):
        hr, filename = self._load_file(idx)
        hr = self.get_patch(hr)
        hr = [common.set_channel(img, n_channels=self.args.n_colors) for img in hr]
        hr_tensor = [common.np2Tensor(img, rgb_range=self.args.rgb_range)
                     for img in hr]

        return torch.stack(hr_tensor, 0), filename
Example #15
0
    def __getitem__(self, idx):  #idx 第几张图片的意思
        lr, hr, filename = self._load_file(idx)
        lr, hr = self._get_patch(lr, hr)
        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        lr, hr, degrade = self._sr_down(lr, hr)

        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        return lr_tensor, hr_tensor, filename, degrade
Example #16
0
 def __getitem__(self, idx):
     lr, labels, filename = self._load_file(idx)
     pair = self.get_patch(lr, labels)
     pair = common.set_channel(*pair, n_channels=self.args.n_colors)
     pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)
     #lr, hr, edge, diff
     #return pair_t[0], pair_t[1],pair_t[2], pair_t[3], filename
     return pair_t[0], pair_t[1:], filename
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = misc.imread(self.filelist[idx])
        lr = self.input_transform(lr,self.args.std_lr_width, self.args.std_lr_height, self.args.gauss_std)
        lr = common.set_channel([lr], self.args.n_colors)[0]

        return (common.np2Tensor([lr], self.args.rgb_range)[0], ""), filename
Example #18
0
 def __getitem__(self, idx):
     lr, hr = self._load_file(idx)
     lr, hr = self._get_patch(lr, hr)
     lr, hr = common.set_channel(lr, hr, n_channels=self.opt.n_colors)
     lr_tensor, hr_tensor = common.np2Tensor(lr,
                                             hr,
                                             rgb_range=self.opt.rgb_range)
     return lr_tensor, hr_tensor
Example #19
0
 def __getitem__(self, idx):
     lr, nl, mk, hr, filename = self._load_file(idx)
     lr, nl, mk, hr = self._get_patch(lr, nl, mk, hr)
     lr, hr = common.set_channel([lr, hr], self.args.n_colors)
     #print('The size of lr, hr images are {}, {}'.format(lr.shape, hr.shape))
     lr_tensor, nl_tensor, mk_tensor, hr_tensor = common.np2Tensor(
         [lr, nl, mk, hr], self.args.rgb_range)
     # if self.model_flag.lower() == 'finetune':
     return lr_tensor, nl_tensor, mk_tensor, hr_tensor, filename
Example #20
0
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = misc.imread(self.filelist[idx])

        if self.args.n_channel_in == self.args.n_channel_out:
            lr = common.set_channel([lr], self.args.n_channel_out)[0]

        return common.np2Tensor([lr], self.args.rgb_range)[0], -1, filename
Example #21
0
    def __getitem__(self, idx):
        lr, hr, filename, pts, facebb = self._load_file(idx)

        lr, hr, pts = self.get_patch(lr, hr, pts)

        # generate heatmaps and masks
        height, width = hr.shape[0], hr.shape[1]
        pts = common.apply_bound(pts, width, height)

        heatmaps, mask = common.generate_label_map(pts,
                                                   height // self.downsample,
                                                   width // self.downsample,
                                                   self.sigma, self.downsample,
                                                   self.heatmap_type)  # H*W*C
        # heatmaps, mask = common.generate_label_map(pts, height//2, width//2, self.sigma, 2, self.heatmap_type) # H*W*C
        # cv2.imshow("heatmaps", np.sum(heatmaps[:, :, 0:-1],2))
        heatmaps = torch.from_numpy(heatmaps.transpose(
            (2, 0, 1))).type(torch.FloatTensor)
        mask = torch.from_numpy(mask.transpose(
            (2, 0, 1))).type(torch.ByteTensor)
        # print(mask.size()) #(69, 1, 1)

        pair = [lr, hr]

        # pair = self.get_patch(lr, hr)
        pair = common.set_channel(*pair, n_channels=self.args.n_colors)
        pair.append(common.resize_bi(pair[0], self.scale[0], 'INTER_CUBIC'))
        # pair: lr, hr, lr_large
        pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)
        '''
        # print(pair[0].shape, pair[1].shape, pair[2].shape, pair[3].shape)
        # print(pair_t[0].size(), pair_t[1].size(), pair_t[2].size())
        # (28, 28, 3) (224, 224, 3) (28, 28, 69) (224, 224, 3)
        # print(pair[0].shape, pair[1].shape, np.sum(pair[2],2).shape, len(filename))
        # show pts
        img = hr.copy()
        for i in range(pts.shape[1]):
            cv2.circle(img,(int(pts[0, i]), int(pts[1, i])), 2, (0,255,0), -1)
        cv2.imshow("hr",img)
        
        # show heatmap
        cv2.imshow("lr",pair[0])
        # cv2.imshow("hr",pair[1])
        # cv2.imshow("heatmaps", np.sum(pair[2][:, :, 0:-1],2))
        cv2.imshow("lr_large", pair[2])

        # gt = pts[0].numpy()
        # for i in range(gt.shape[1]):
            # cv2.circle(gt[1],(int(gt[0, i]), int(gt[1, i])), 4, (0,255,0), -1)
            # cv2.circle(pred[1],(int(pred[0, i]), int(pred[1, i])), 5, (0,255,0), -1)
        hr_np = pair_t[1].numpy().transpose(1,2,0)#.detach().cpu()
        cv2.imshow("hr_tensor",hr_np)
        cv2.waitKey(0)
        '''
        # lr, hr,  lr_large, heatmaps,mask
        return pair_t[0], pair_t[1], pair_t[
            2], heatmaps, mask, pts, filename, facebb
Example #22
0
    def __getitem__(self, idx):
        if self.args.process:
            lrs, hrs, filenames = self._load_file_from_loaded_data(idx)
        else:
            lrs, hrs, filenames = self._load_file(idx)

        patches = [self.get_patch(lr, hr) for lr, hr in zip(lrs, hrs)]
        lrs = np.array([patch[0] for patch in patches])
        hrs = np.array([patch[1] for patch in patches])
        lrs = np.array(common.set_channel(*lrs, n_channels=self.args.n_colors))
        hrs = np.array(common.set_channel(*hrs, n_channels=self.args.n_colors))
        lr_tensors = common.np2Tensor(*lrs,
                                      rgb_range=self.args.rgb_range,
                                      n_colors=self.args.n_colors)
        hr_tensors = common.np2Tensor(*hrs,
                                      rgb_range=self.args.rgb_range,
                                      n_colors=self.args.n_colors)
        return torch.stack(lr_tensors), torch.stack(hr_tensors), filenames
Example #23
0
    def __getitem__(self, idx):
        lr, hr, filename = self._load_file(idx)
        pair = self.get_patch(lr, hr)  #patch 以及数据增强
        #是输入rgb 还是 y通道 使用skimage
        pair = common.set_channel(
            *pair, n_channels=self.args.n_colors)  # *解耦 从而可以传入*args
        pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)

        return pair_t[0], pair_t[1], filename
Example #24
0
    def __getitem__(self, idx):

        if len(self.remain_idx) == 0 and self.train:
            filename_hr, filename_lr = self._load_file()
        # lr, hr, filename = self._load_file(idx)
        lr, hr = self._get_patch()  #lr, hr)
        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        return lr_tensor, hr_tensor, ''  #filename_hr
Example #25
0
    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = imageio.imread(self.filelist[idx])
        lr = common.set_channel(lr, n_channels=self.args.n_colors)
        lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
        #lr_cb,lr_cr = common.np2Tensor(lr_cb,lr_cr, rgb_range=self.args.rgb_range)

        return lr_t, -1, filename
Example #26
0
    def __getitem__(self, idx):
        scale = self.scale[self.idx_scale]
        idx = self._get_index(idx)
        img_in, img_tar = self._load_file(idx)
        img_in, img_tar, pi, ai = self._get_patch(img_in, img_tar)
        img_in, img_tar = common.set_channel(
            img_in, img_tar, self.args.n_colors)

        return common.np2Tensor(img_in, img_tar, self.args.rgb_range)
Example #27
0
    def test(self):
        torch.set_grad_enabled(False)

        # self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

            W = int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
            H = int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))

            vidwri = cv2.VideoWriter(
                '{}/{}_x{}.avi'.format(self.args.save_dir, self.filename,
                                       scale),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    W,  #int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    H,  #int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                ))

            tqdm_test = tqdm(range(total_frames), ncols=80)
            lr = torch.zeros([1, 3, H // scale, W // scale])
            estimate = torch.zeros(1, 3, H, W)

            for _ in tqdm_test:
                lr_ = lr
                success, lr = vidcap.read()
                if not success: break

                lr = (common.set_channel([lr], n_channel=self.args.n_colors))
                lr = (common.np2Tensor(np.array([lr]),
                                       rgb_range=self.args.rgb_range))
                lr, lr_, estimate = self.prepare([lr[0], lr_, estimate])

                with torch.no_grad():
                    sr, lre = self.model(
                        lr, lr_, estimate
                    )  #forward_chop(lr[0], self.model, scale=scale)#self.model(lr[0], idx_scale)
                    estimate = sr
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()
        '''
        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )'''
        torch.set_grad_enabled(True)
Example #28
0
 def __getitem__(self, idx):
     folder = self.filelist[idx].split('/')[-2]
     filename = folder + '/' + os.path.splitext(
         os.path.basename(self.filelist[idx]))[0]
     # print("working on {}".format(filename))
     lr = imageio.imread(self.filelist[idx])
     lr, = common.set_channel(lr, n_channels=self.args.n_colors)
     lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
     print("working on {}".format(filename))
     return lr_t, -1, filename
Example #29
0
    def __getitem__(self, idx):
        img_in = misc.imread(self.filelist[idx])
        if len(img_in.shape) == 2:
            img_in = np.expand_dims(img_in, 2)

        img_in, img_tar = common.set_channel(img_in, img_in, self.args.n_colors)
        img_tar = misc.imresize(
            img_tar, self.scale[self.idx_scale] * 100, interp='bicubic')

        return common.np2Tensor(img_in, img_tar, self.args.rgb_range)
Example #30
0
    def __getitem__(self, idx):
        lr, hr, filename = self._load_file(idx)
        pair = self.get_patch(lr, hr)
        pair = common.set_channel(*pair, n_channels=self.args.n_colors)
        pair = common.add_noise(*pair,
                                noise_type=self.args.noise_type,
                                noise_param=self.args.noise_param)
        pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)

        return pair_t[0], pair_t[1], filename