def transform_tr(self, sample): if self.table == {}: composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), #tr.Remap(self.building_table, self.nonbuilding_table, self.channels) tr.RandomGaussianBlur(), #tr.ConvertFromInts(), #tr.PhotometricDistort(), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) else: composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), tr.Remap(self.table, self.channels), tr.RandomGaussianBlur(), #tr.ConvertFromInts(), #tr.PhotometricDistort(), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) return composed_transforms(sample)
def get_transformations(p): """ Return transformations for training and evaluationg """ from data import custom_transforms as tr db_name = p['train_db_name'] __imagenet_pca = { 'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]), 'eigvec': torch.Tensor([ [-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203], ]) } # Training transformations # Horizontal flips with probability of 0.5 transforms_tr = [tr.RandomHorizontalFlip()] # Fixed Resize to input resolution transforms_tr.extend([ tr.FixedResize(resolutions={ x: tuple(p.TRAIN.SCALE) for x in p.ALL_TASKS.FLAGVALS }, flagvals={ x: p.ALL_TASKS.FLAGVALS[x] for x in p.ALL_TASKS.FLAGVALS }) ]) transforms_tr.extend([tr.AddIgnoreRegions(), tr.ToTensor()]) transforms_tr.extend( [tr.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) transforms_tr = transforms.Compose(transforms_tr) # Testing (during training transforms) transforms_ts = [] transforms_ts.extend([ tr.FixedResize( resolutions={ x: tuple(p.TRAIN.SCALE) for x in p.ALL_TASKS.FLAGVALS }, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS}) ]) transforms_ts.extend([ tr.AddIgnoreRegions(), tr.ToTensor(), tr.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) transforms_ts = transforms.Compose(transforms_ts) return transforms_tr, transforms_ts
def get_transformations(p): """ Return transformations for training and evaluationg """ from data import custom_transforms as tr # Training transformations # Horizontal flips with probability of 0.5 transforms_tr = [tr.RandomHorizontalFlip()] # Rotations and scaling transforms_tr.extend([ tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25), flagvals={ x: p.ALL_TASKS.FLAGVALS[x] for x in p.ALL_TASKS.FLAGVALS }) ]) # Fixed Resize to input resolution transforms_tr.extend([ tr.FixedResize(resolutions={ x: tuple(p.TRAIN.SCALE) for x in p.ALL_TASKS.FLAGVALS }, flagvals={ x: p.ALL_TASKS.FLAGVALS[x] for x in p.ALL_TASKS.FLAGVALS }) ]) transforms_tr.extend([ tr.AddIgnoreRegions(), tr.ToTensor(), tr.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) transforms_tr = transforms.Compose(transforms_tr) # Testing (during training transforms) transforms_ts = [] transforms_ts.extend([ tr.FixedResize( resolutions={x: tuple(p.TEST.SCALE) for x in p.TASKS.FLAGVALS}, flagvals={x: p.TASKS.FLAGVALS[x] for x in p.TASKS.FLAGVALS}) ]) transforms_ts.extend([ tr.AddIgnoreRegions(), tr.ToTensor(), tr.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) transforms_ts = transforms.Compose(transforms_ts) return transforms_tr, transforms_ts
def transform_tr(self, sample): train_transforms = list() train_transforms.append(tr.Resize(self.cfg.LOAD_SIZE)) train_transforms.append(tr.RandomScale(self.cfg.RANDOM_SCALE_SIZE)) train_transforms.append( tr.RandomCrop(self.cfg.FINE_SIZE, pad_if_needed=True, fill=0)) train_transforms.append(tr.RandomRotate()) train_transforms.append(tr.RandomGaussianBlur()) train_transforms.append(tr.RandomHorizontalFlip()) # if self.cfg.TARGET_MODAL == 'lab': # train_transforms.append(tr.RGB2Lab()) if self.cfg.MULTI_SCALE: for item in self.cfg.MULTI_TARGETS: self.ms_targets.append(item) train_transforms.append( tr.MultiScale(size=self.cfg.FINE_SIZE, scale_times=self.cfg.MULTI_SCALE_NUM, ms_targets=self.ms_targets)) train_transforms.append(tr.ToTensor()) train_transforms.append( tr.Normalize(mean=self.cfg.MEAN, std=self.cfg.STD, ms_targets=self.ms_targets)) composed_transforms = transforms.Compose(train_transforms) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_val(self, sample): val_transforms = list() val_transforms.append(tr.Resize(self.cfg.LOAD_SIZE)) if self.cfg.MULTI_SCALE: val_transforms.append(tr.MultiScale(size=self.cfg.FINE_SIZE,scale_times=self.cfg.MULTI_SCALE_NUM, ms_targets=self.ms_targets)) val_transforms.append(tr.ToTensor()) val_transforms.append(tr.Normalize(mean=self.cfg.MEAN, std=self.cfg.STD, ms_targets=self.ms_targets)) composed_transforms = transforms.Compose(val_transforms)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.Normalize(), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), tr.Normalize(), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ # tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), # tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_tr(self, sample): train_transforms = list() train_transforms.append(tr.RandomHorizontalFlip()) train_transforms.append(tr.RandomScaleCrop(base_size=self.cfg.LOAD_SIZE, crop_size=self.cfg.FINE_SIZE)) train_transforms.append(tr.RandomGaussianBlur()) train_transforms.append(tr.ToTensor()) train_transforms.append(tr.Normalize(mean=self.cfg.MEAN, std=self.cfg.STD, ms_targets=self.ms_targets)) composed_transforms = transforms.Compose(train_transforms) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.Normalize(mean=self.mean_std[0], std=self.mean_std[1]), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.Normalize(), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), tr.RandomGaussianBlur(), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std']), tr.ToTensor(), ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=self.mean_std[0], std=self.mean_std[1]), # tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_pair_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), tr.HorizontalFlip(), tr.GaussianBlur(), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std'], if_pair=True), tr.ToTensor(if_pair=True), ]) return composed_transforms(sample)
def transform_finetune(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), # tr.RandomCrop(crop_size = 200), tr.RandomScaleCrop(base_size=600, crop_size=400, fill=0), tr.RandomGaussianBlur(), tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_ts(self, sample): sample = tr.Normalize()(sample) sample = tr.ToTensor()(sample) # composed_transforms = transforms.Compose([ # tr.FixedResize(size=400), # #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), # tr.Normalize(), # tr.ToTensor()]) # return composed_transforms(sample) return sample
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=(0.1420, 0.2116, 0.2823), std=(0.0899, 0.1083, 0.1310)), # tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=(0.2382, 0.2741, 0.3068), std=(0.1586, 0.1593, 0.1618)), # tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_pair_train(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), #tr.RandomGaussianBlur(), tr.HorizontalFlip(), tr.GaussianBlur(), tr.Normalize(if_pair=True), tr.ToTensor(if_pair=True), ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=(0.2709, 0.3400, 0.3707), std=(0.1403, 0.1570, 0.1658)), # tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): val_transforms = list() val_transforms.append(tr.FixScaleCrop(crop_size=self.cfg.FINE_SIZE)) val_transforms.append(tr.ToTensor()) val_transforms.append( tr.Normalize(mean=self.cfg.MEAN, std=self.cfg.STD, ms_targets=self.ms_targets)) composed_transforms = transforms.Compose(val_transforms) return composed_transforms(sample)
def transform_pair_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(400), #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.HorizontalFlip(), tr.GaussianBlur(), tr.Normalize(if_pair=True), tr.ToTensor(if_pair=True), ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=400), tr.Normalize(mean=(0.3441, 0.3809, 0.4014), std=(0.1883, 0.2039, 0.2119)), # tr.Normalize(), tr.ToTensor() ]) return composed_transforms(sample)
def transform_pair_train(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), tr.RandomGaussianBlur(), tr.ColorDistort(if_pair=True), #tr.CropAndResize(if_pair=True), tr.Normalize(mean=self.source_dist['mean'], std=self.source_dist['std'], if_pair=True), tr.ToTensor(if_pair=True), ]) return composed_transforms(sample)
def transform_tr(self, sample): sample = tr.Normalize()(sample) sample = tr.ToTensor()(sample) # composed_transforms = transforms.Compose([ # #tr.RandomHorizontalFlip(), # tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), # #tr.RandomGaussianBlur(), # #tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), # tr.Normalize(), # tr.ToTensor()]) # return composed_transforms(sample) return sample
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomVerticalFlip(), tr.RandomRotate(180), tr.RandomScaleCrop(base_size=400, crop_size=400, fill=0), tr.RandomGaussianBlur(), # tr.Normalize(), tr.Normalize(mean=(0.2382, 0.2741, 0.3068), std=(0.1586, 0.1593, 0.1618)), tr.ToTensor(), ]) return composed_transforms(sample)