Example #1
0
 def center(category):
     database = DataGetter.get__db()
     appIds = database.get_app_ids()
     c = center.Center()
     for appId in appIds:
         c.set_property(category, appId)
         data = c.calculate()
         c.record_data(data)
Example #2
0
 def cluster_data(category, Minpts=2, e=0.6):
     # 获取应用id
     database = DataGetter.get__db()
     appIds = database.get_app_ids()
     d = dbscan.DBSCAN()
     for appId in appIds:
         # dbscan算法聚簇
         d.set_property(category, appId)
         clusters = d.dbscan(Minpts, e)
         # 持久化数据
         d.record_cluster(clusters)
Example #3
0
 def classify_data(lower, quantity):
     database = DataGetter.get__db()
     # 从原始数据中读取指定数量数据
     data = database.load_specified_quantity_data(lower, quantity)
     # 初始化预处理器和分类器
     p = preprocess.Preprocess()
     b = bayes.Bayes()
     for i in range(len(data)):
         # 将数据进行预处理
         p.set_sentence(data[i][1])
         sentence_processed = p.preprocess()
         if sentence_processed == '':
             category = con.USELESS
         else:
             # 朴素贝叶斯算法分类器对文本进行分类
             # print sentence_processed, data[i][2]
             b.set_property(sentence_processed, data[i][2])
             category = b.bayes_classifier_improved2()
         data[i] = [data[i][0], sentence_processed, data[i][2], category]
         # print data[i]
     # 持久化
     database.save_data(data)
Example #4
0
 def __init__(self):
     self.__clusterHelper = DataGetter.get__clusterHelper()
     self.__db = DataGetter.get__db()
Example #5
0
 def __init__(self):
     self.__database = DataGetter.get__db()
Example #6
0
 def __init__(self, category, appId):
     self.__category = category
     self.__appId = appId
     self.__database = DataGetter.get__db()
     self.__clusterHelper = DataGetter.get__clusterHelper()
     self.__isAborted = False