Example #1
0
    def transform_imglabel(self,image,label,name):
        size = np.array(image, dtype=np.uint8).shape
        # print(name)
        name1 = name
        if name1.startswith('site1'):
            image = image.resize((math.ceil(2*size[1]),math.ceil(2*size[0])), Image.BICUBIC)
            label = label.resize((math.ceil(2*size[1]),math.ceil(2*size[0])), Image.NEAREST)
            image = np.asarray(image, np.float32)
            print(image.shape)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))
        elif name1.startswith('site2'):
            image = image.resize((math.ceil(2*size[1]),math.ceil(2*size[0])), Image.BICUBIC)
            label = label.resize((math.ceil(2*size[1]),math.ceil(2*size[0])), Image.NEAREST)
            image = np.asarray(image, np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))
        elif name1.startswith('site4'):
            image = image.resize((math.ceil(1.16*size[1]),math.ceil(1.16*size[0])), Image.BICUBIC)
            label = label.resize((math.ceil(1.16*size[1]),math.ceil(1.16*size[0])), Image.NEAREST)
            image = np.asarray(image, np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))
        elif name1.startswith('site3'):
            image = np.array(image, dtype=np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))

        image = np.expand_dims(image, axis=2)
        label = np.expand_dims(label, axis=2) 
        img_label = np.concatenate((image, label), axis=-1)
        img_label = CenterCrop(img_label,128)
        image = img_label[..., 0]
        label = img_label[..., 1]
        label = np.squeeze(label)
        image = np.squeeze(image)
        return image,label
Example #2
0
    def transform(self, image, label, name):
        size = np.array(image, dtype=np.uint8).shape
        # print(name)
        name1 = name
        # print(name)
        if name1.startswith('site1') or name1.startswith('site2'):
            image = image.resize(
                (math.ceil(2 * size[1]), math.ceil(2 * size[0])),
                Image.BICUBIC)
            label = label.resize(
                (math.ceil(2 * size[1]), math.ceil(2 * size[0])),
                Image.NEAREST)
            image = np.asarray(image, np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))
        elif name1.startswith('site4'):
            image = image.resize(
                (math.ceil(1.16 * size[1]), math.ceil(1.16 * size[0])),
                Image.BICUBIC)
            label = label.resize(
                (math.ceil(1.16 * size[1]), math.ceil(1.16 * size[0])),
                Image.NEAREST)
            image = np.asarray(image, np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))
        elif name1.startswith('site3'):
            image = np.array(image, dtype=np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))

        label = np.expand_dims(label, axis=2)
        img_label = np.concatenate((image, label), axis=-1)
        img_label = CenterCrop(img_label, self.img_size)
        image = img_label[..., :3]
        label = img_label[..., 3]
        label = np.squeeze(label)
        image = np.squeeze(image)
        image = image / 255.0
        image = (image - np.mean(image)) / np.std(image)
        image = np.transpose(image, (2, 0, 1))
        label = np.expand_dims(label, axis=0)
        image = torch.FloatTensor(image)
        label = torch.FloatTensor(label)
        return image, label
Example #3
0
    def __getitem__(self, index):
        datafiles = self.files[index]
        image = Image.open(datafiles["img"]).convert('L')
        name = datafiles["name"]
        label = Image.open(datafiles["lbl"]).convert('L')
        if self.set =='test':
            if self.resize_and_crop == "center_crop":
                size = np.array(label, dtype=np.uint8).shape[1]
                if size <= self.crop_size:
                    image = np.asarray(image, np.float32)
                    label = self.encode_segmap(np.array(label, dtype=np.uint8))
                else:
                    image = np.asarray(image, np.float32)
                    label = self.encode_segmap(np.array(label, dtype=np.uint8))
                    image = np.expand_dims(image, axis=2) 
                    label = np.expand_dims(label, axis=2) 
                    img_label = np.concatenate((image, label), axis=-1)
                    img_label = CenterCrop(img_label,self.crop_size)
                    image = img_label[..., 0]
                    label = img_label[..., 1]
                    label = np.squeeze(label)
                    image = np.squeeze(image)

        if self.set =='train':
            if self.resize_and_crop == "resize":
                image = image.resize(self.img_size, Image.BICUBIC)
                image = np.asarray(image, np.float32)
                label = label.resize(self.img_size, Image.NEAREST)
                label = self.encode_segmap(np.array(label, dtype=np.uint8))

            elif self.resize_and_crop == "center_crop":
                size = np.array(label, dtype=np.uint8).shape
                if size[1] <= self.crop_size:
                    image = image.resize(self.img_size, Image.BICUBIC)
                    label = label.resize(self.img_size, Image.NEAREST)
                    image = np.asarray(image, np.float32)
                    label = self.encode_segmap(np.array(label, dtype=np.uint8))
                else:
                    image = np.asarray(image, np.float32)
                    label = self.encode_segmap(np.array(label, dtype=np.uint8))
                    image = np.expand_dims(image, axis=2)
                    label = np.expand_dims(label, axis=2) 
                    img_label = np.concatenate((image, label), axis=-1)
                    img_label = CenterCrop(img_label,self.crop_size)
                    image = img_label[..., 0]
                    label = img_label[..., 1]
                    label = np.squeeze(label)
                    image = np.squeeze(image)

            elif self.resize_and_crop == "resize_and_center_crop":
                image = image.resize(self.img_size, Image.BICUBIC)
                image = np.asarray(image, np.float32)
                label = label.resize(self.img_size, Image.NEAREST)
                label = self.encode_segmap(np.array(label, dtype=np.uint8))
                label = np.expand_dims(label, axis=2) 
                img_label = np.concatenate((image, label), axis=-1)
                image, label = CenterCrop(image, label,self.crop_size)
                image = img_label[..., 0]
                label = img_label[..., 1]
                label = np.squeeze(label)
                image = np.squeeze(image)

            elif self.resize_and_crop == "resize_and_random_crop":
                image = image.resize(self.img_size, Image.BICUBIC)
                image = np.asarray(image, np.float32)

                label = label.resize(self.img_size, Image.NEAREST)
                label = self.encode_segmap(np.array(label, dtype=np.uint8))
                label = np.expand_dims(label, axis=2) 
                image = np.expand_dims(image, axis=2)
                img_label = np.concatenate((image, label), axis=-1)
                img_label = RandomCrop(img_label,self.crop_size)
                image = img_label[..., 0]
                label = img_label[..., 1]
                label = np.squeeze(label)
                image = np.squeeze(image)
        else:
            image = np.asarray(image, np.float32)
            label = self.encode_segmap(np.array(label, dtype=np.uint8))

        # normalize image
        image = image / 255.0
        image -= np.mean(image)
        image = image/np.std(image)

        label = np.expand_dims(label, axis=0) 
        image = np.expand_dims(image, axis=0)
        if self.nlabel:
            size = label.shape
            lbl = np.zeros((self.n_class,label.shape[1],label.shape[2]))
            for i in range(self.n_class):
                lbl[i] = np.array((label[0] == i), dtype=np.uint8)
        return image.copy(), lbl.copy(), label.copy(), size, name