Example #1
0
def test_mask_params_stored_in_dict(fake_geo_data):
    dataroot, DIV_datas, Vx_datas, Vy_datas = fake_geo_data

    p = GeoPickler(dataroot)

    p.collect_all()

    p.group_by_series()

    data_dict = p.get_data_dict(0, 0)

    DIV = (np.random.randn(*data_dict['A_DIV'].shape) * 20000)

    data_dict['A_DIV'] = DIV

    p.create_one_hot(data_dict, 1000)

    p.get_mask_loc(data_dict, 4, 6)

    assert (data_dict['mask_size'] == 4)
    assert (data_dict['min_pix_in_mask'] == 6)
Example #2
0
def test_mask_location(fake_geo_data):
    dataroot, DIV_datas, Vx_datas, Vy_datas = fake_geo_data

    p = GeoPickler(dataroot)

    p.collect_all()

    p.group_by_series()

    data_dict = p.get_data_dict(0, 0)

    DIV = (np.random.randn(*data_dict['A_DIV'].shape) * 20000)

    data_dict['A_DIV'] = DIV

    p.create_one_hot(data_dict, 1000)

    p.get_mask_loc(data_dict, 4, 6)

    one_hot = data_dict['A']

    mask_loc = data_dict['mask_locs']

    assert (len(mask_loc) > 0)

    for x in range(one_hot.shape[1] - 4):
        for y in range(one_hot.shape[0] - 4):
            sum1 = np.sum(one_hot[y:y + 4, x:x + 4, 0])
            sum2 = np.sum(one_hot[y:y + 4, x:x + 4, 2])

            if (y, x) in mask_loc:
                assert (np.sum(one_hot[y:y + 4, x:x + 4, 0]) >= 6)
                assert (np.sum(one_hot[y:y + 4, x:x + 4, 2]) >= 6)
            else:
                assert (np.sum(one_hot[y:y + 4, x:x + 4, 0]) < 6
                        or np.sum(one_hot[y:y + 4, x:x + 4, 2]) < 6)