def initialize(self, opt): self.opt = opt self.A_paths = [] self.B_paths = [] for root_dir_item in opt.root_dir: dir_A_tmp = os.path.join(root_dir_item, opt.phase + '_A') dir_B_tmp = os.path.join(root_dir_item, opt.phase + '_B') img_list = os.path.join(root_dir_item, opt.name_img_list) A_labels_tmp, A_paths_tmp = get_list(dir_A_tmp, img_list) B_labels_tmp, B_paths_tmp = get_list(dir_B_tmp, img_list) self.A_paths += A_paths_tmp self.B_paths += B_paths_tmp assert (len(self.A_paths) == len(self.B_paths)) assert (opt.resize_or_crop == 'resize_and_crop') transform_list = [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] self.transform = transforms.Compose(transform_list) self.crop_type = opt.crop_type
def initialize(self, opt): self.opt = opt self.A_paths = [] self.B_paths = [] for root_dir_item in opt.root_dir: dir_A_tmp = os.path.join(root_dir_item, opt.phase + '_A') dir_B_tmp = os.path.join(root_dir_item, opt.phase + '_B') img_list = os.path.join(root_dir_item, opt.name_img_list) A_labels_tmp, A_paths_tmp = get_list(dir_A_tmp, img_list) B_labels_tmp, B_paths_tmp = get_list(dir_B_tmp, img_list) self.A_paths += A_paths_tmp self.B_paths += B_paths_tmp self.color_A = opt.color_A self.color_B = opt.color_B self.heatmap_size = opt.fineSize_B self.transform = AffineCompose( rotation_range=opt.rotate_range, translation_range=opt.translate_range, zoom_range=opt.zoom_range, output_img_width=opt.fineSize_A, output_img_height=opt.fineSize_A, mirror=opt.mirror, corr_list=None, normalise=opt.normalise, normalisation_type=opt.normalisation_type)
def initialize(self, opt): self.opt = opt self.dir_A = os.path.join(opt.dir_landmarks_list_A, opt.name_landmarks_list) self.dir_B = os.path.join(opt.dir_landmarks_list_B, opt.name_landmarks_list) self.A_items = get_list(self.dir_A) self.B_items = get_list(self.dir_B) self.A_size = len(self.A_items) self.B_size = len(self.B_items)
def initialize(self, opt): self.opt = opt self.F1_paths = [] self.F1_labels = [] for root_dir_item in opt.root_dir: dir_F1_tmp = os.path.join(root_dir_item, 'train' + '_F1') img_list = os.path.join(root_dir_item, opt.name_landmarks_list) F1_labels_tmp, F1_paths_tmp = get_list(dir_F1_tmp, img_list) self.F1_paths += F1_paths_tmp self.F1_labels += F1_labels_tmp self.color_F1 = opt.color_F1 self.fineSize_F1 = opt.fineSize_F1 self.sigma = opt.sigma self.label_num = opt.label_num self.transform = AffineCompose( rotation_range=opt.rotate_range, translation_range=opt.translate_range, zoom_range=opt.zoom_range, output_img_width=self.fineSize_F1, output_img_height=self.fineSize_F1, mirror=opt.mirror, corr_list=opt.corr_list, normalise=opt.normalise, normalisation_type=opt.normalisation_type)
def initialize(self, opt): self.opt = opt self.A_paths = [] self.A_labels = [] for root_dir_item in opt.root_dir: dir_A_tmp = os.path.join(root_dir_item, 'Image') img_list = os.path.join(root_dir_item, opt.name_landmarks_list) A_labels_tmp, A_paths_tmp = get_list(dir_A_tmp, img_list) self.A_paths += A_paths_tmp self.A_labels += A_labels_tmp self.color_A = opt.color_A self.label_size = opt.fineSize_A self.heatmap_size = opt.fineSize_B self.heatmap_num = opt.output_nc self.sigma = opt.sigma self.label_num = opt.label_num self.transform = AffineCompose( rotation_range=opt.rotate_range, translation_range=opt.translate_range, zoom_range=opt.zoom_range, output_img_width=self.label_size, output_img_height=self.label_size, mirror=opt.mirror, corr_list=opt.corr_list, normalise=opt.normalise, normalisation_type=opt.normalisation_type)