def get_data_set(type='train'): if type == 'train': return imagenet_dali.get_imagenet_iter_dali('train', args.data_path, args.train_batch_size, num_threads=4, crop=224, device_id=args.gpus[0], num_gpus=1) else: return imagenet_dali.get_imagenet_iter_dali('val', args.data_path, args.eval_batch_size, num_threads=4, crop=224, device_id=args.gpus[0], num_gpus=1)
def get_data_set(type='train'): if type == 'train': return imagenet_dali.get_imagenet_iter_dali('train', args.data_dir, args.batch_size, num_threads=4, crop=224, device_id=0, num_gpus=1) else: return imagenet_dali.get_imagenet_iter_dali('val', args.data_dir, args.batch_size, num_threads=4, crop=224, device_id=0, num_gpus=1)
from importlib import import_module device = torch.device( f"cuda:{args.gpus[0]}") if torch.cuda.is_available() else 'cpu' loss_func = nn.CrossEntropyLoss() # Data print('==> Preparing data..') if args.data_set == 'cifar10': testLoader = cifar10.Data(args).testLoader else: #imagenet if device != 'cpu': testLoader = imagenet_dali.get_imagenet_iter_dali( 'val', args.data_path, args.eval_batch_size, num_threads=4, crop=224, device_id=args.gpus[0], num_gpus=1) else: testLoader = imagenet.Data(args).testLoader def test(model, topk=(1, )): model.eval() losses = utils.AverageMeter() accuracy = utils.AverageMeter() top5_accuracy = utils.AverageMeter() start_time = time.time()