Example #1
0
 def gen_benchmarks(self, force=False):
     if not os.path.isfile(self.filtering_benchmark) or force:
         print('generating benchmark {}...'.format(
             self.filtering_benchmark))
         bench = []
         for _ in range(100):
             bench.append(
                 sample_mog(10,
                            1000,
                            4,
                            rand_N=True,
                            rand_K=True,
                            return_ll=True))
         torch.save(bench, self.filtering_benchmark)
     if not os.path.isfile(self.clustering_benchmark) or force:
         print('generating benchmark {}...'.format(
             self.clustering_benchmark))
         bench = []
         for _ in range(100):
             bench.append(
                 sample_mog(10,
                            3000,
                            12,
                            rand_N=True,
                            rand_K=True,
                            return_ll=True))
         torch.save(bench, self.clustering_benchmark)
Example #2
0
    def gen_benchmarks(self, force=False):
        if not os.path.isfile(self.testfile) or force:
            print('generating benchmark {}...'.format(self.testfile))
            bench = []
            for _ in range(100):
                bench.append(sample_mog(10, 1000, 4,
                    rand_N=True, rand_K=True, return_ll=True))
            torch.save(bench, self.testfile)
        if not os.path.isfile(self.clusterfile) or force:
            print('generating benchmark {}...'.format(self.clusterfile))
            bench = []
            for _ in range(100):
                # bench.append(sample_mog(10, 3000, 12,
                bench.append(sample_mog(10, 600, 12,
                    rand_N=True, rand_K=True, return_ll=True))
 #                bench.append(sample_mog_FP(B=10, N=-1, K=12, sample_K=False, det_per_cluster=4, dim=2,
 # onehot=True, add_false_positives=False, FP_count=64, meas_std=.1))
            torch.save(bench, self.clusterfile)
Example #3
0
 def sample(self, B, N, K, **kwargs):
     return sample_mog(B, N, K, device='cuda', **kwargs)
Example #4
0
File: mog.py Project: mlzxy/dac
 def sample(self, B, N, K, **kwargs):
     return sample_mog(B, N, K, device=torch.device('cuda'), **kwargs)