Example #1
0
def download_yahoo(asset_list):
    MS = MongoStorage()
    z = MS.Find({
        "Name": {
            "$in": asset_list
        },
        "SeriesType": {
            "$in": ["yahoo"]
        }
    })
    exist_asset = [j["Name"] for j in z]
    to_download_asset_list = [j for j in asset_list if j not in exist_asset]
    to_download_asset_list

    for asset in to_download_asset_list:
        try:
            df = query_data(asset)
            df[asset] = df["Adj Close"].pct_change()
            df = df.dropna()
            rdf = df[[asset]]
            if rdf.shape[0] > 100:
                rs = RSeries()
                rs.load_custom_series(rdf,
                                      custom_series_name=asset,
                                      series_type="yahoo")
                rs.SaveSeries()
            else:
                print("Not enough data:", asset)
        except Exception as err:
            print(err)
            print("Error:", asset)
Example #2
0
def get_benchmark(benchmark, client=None):
    MS = MongoStorage(client=client)
    id_list = MS.Find(find_filter={
        "SeriesType": "Benchmark",
        "Name": benchmark
    },
                      id_only=True)
    rs = MS.Load(id_list)[0]
    return rs.df
Example #3
0
class SingleIntervalAllocator(object):
    # Example args:
    # s1, s2 = datetime.datetime(2017,1,1), datetime.datetime(2018,1,1)
    # a1, a2 = datetime.datetime(2018,1,1), datetime.datetime(2019,1,1)
    # f1, f2 = datetime.datetime(2019,1,1), datetime.datetime(2019,6,1)
    # find_filter, sample_threshold = 2
    # sample_population_n = 10000
    # sample_population_seed = 123
    # gen_weight = False
    # excluder_kwargs = [
    #                     {"name": "exclude_high_correlation", "kwargs": {"corr_threshold": 0.9}},
    #                     {"name": "exclude_seasonality_month", "kwargs": {}},
    #                     {"name": "exclude_data_mined", "kwargs": {}}
    #                 ] # apply each in sequence
    # selector_kwargs = {"select_method": "select_all"}
    # allocator_kwargs = {"allocate_method": "constrained_risk_parity", "upperbound": 0.3, "adj_lowerbound": 0.008, "strat_min_alloc": {}}
    # evaluator_kwargs = {"f1": None, "f2": None}

    def __init__(self,
                 s1,
                 s2,
                 a1,
                 a2,
                 excluder_kwargs,
                 selector_kwargs,
                 allocator_kwargs,
                 find_filter,
                 sample_threshold=2,
                 sample_population_n=10000,
                 sample_population_seed=123,
                 f1=None,
                 f2=None,
                 **kwargs):
        date_kwargs = self.construct_dates(
            s1, s2, a1, a2, f1, f2
        )  # Construct boundary dates for filtering population strategiess
        selector_kwargs = {**selector_kwargs, **date_kwargs}
        allocator_kwargs = {**allocator_kwargs, **date_kwargs}
        excluded = {}

        self.MS = MongoStorage()  # Initialize MongoStorage
        meta_list = self.get_full_meta(
            find_filter, **date_kwargs)  # Get full population metadata
        if len(meta_list) >= sample_threshold:
            track_df, excluded_0 = self.sample_from_population(
                meta_list, n=sample_population_n, seed=sample_population_seed)

            # Exclude, Select, Allocate
            track_df, excluded_1 = Excluder(track_df, date_kwargs,
                                            excluder_kwargs).get_output()
            track_df, excluded_2 = Selector(track_df,
                                            **selector_kwargs).get_output()
            track_df = Allocator(track_df, **allocator_kwargs).get_output()
            excluded = {**excluded_0, **excluded_1, **excluded_2}
            forward_df = self.construct_forward_series(track_df, f1, f2)
            self.track_df, self.excluded, self.forward_df = track_df, excluded, forward_df

    def get_output(self, subset=True):
        if subset:
            return self.subset_track_df(
                self.track_df), self.excluded, self.forward_df
        else:
            return self.track_df, self.excluded, self.forward_df

    def construct_dates(self, s1, s2, a1, a2, f1, f2, **kwargs):
        startdate, enddate = min(s1, a1), max(s2, a2)
        date_kwargs = {
            "s1": s1,
            "s2": s2,
            "a1": a1,
            "a2": a2,
            "f1": f1,
            "f2": f2,
            "startdate": startdate,
            "enddate": enddate
        }
        return date_kwargs

    def get_full_meta(self, find_filter, startdate, enddate, **kwargs):
        # filter_dict = {"User": {"$nin": ["Deleted"], "$regex": user_regex_filter}, "StartDate": {"$lte": b_startdate}, "EndDate": {"$gte": f_enddate}}
        find_filter["StartDate"] = {"$lte": startdate}
        find_filter["EndDate"] = {"$gte": enddate}
        meta_list = [j for j in self.MS.Find(find_filter)]
        new_meta_list = pd.DataFrame(meta_list).sort_values("EndDate").groupby(
            "Name").last().reset_index().to_dict(orient="records")
        if len(meta_list) > len(new_meta_list):
            print("DUPLICATES FOUND! Duplicates will be removed...")
        # self.meta_list = meta_list #debug
        return new_meta_list

    def sample_from_population(self, meta_list, n=10000, seed=123, **kwargs):
        """Sample from population strategies, return id_list for loading."""
        if len(meta_list) == 0:
            # self.log("SampleFromPopulation: No strategies found!", "SampleFromPopulation")
            raise Exception(
                "No strategies found! (Likely due to date constraints)")

        fdf = df = pd.DataFrame(meta_list)
        N = df.shape[0]

        exclude_sample_meta_df = pd.DataFrame()
        if n >= N:
            full_meta = meta_list
        else:
            df["filter"] = df.groupby("Name")["EndDate"].apply(
                lambda x: x == np.max(x))
            fdf = df[df["filter"]].sort_values("Name")
            fdf = fdf.set_index("Name")
            fdf = fdf.loc[~fdf.index.duplicated(keep='last')]
            fdf = fdf.reset_index()
            fdf_full = fdf.copy()
            fdf = fdf_full.sample(n, random_state=seed).copy()
            exclude_sample_meta_df = fdf_full.loc[
                ~fdf_full["Name"].isin(fdf["Name"]), :].copy()

        # self.log("SampleStrategies: {}".format(str(fdf["Name"].values)), "SampleFromPopulation_2")
        id_list = [_id for _id in fdf["_id"].values]
        fdf["rs"] = [self.MS.Load([_id])[0] for _id in fdf["_id"].values]
        excluded = {}
        excluded['exclude_sample'] = exclude_sample_meta_df
        return fdf, excluded

    def subset_track_df(self, track_df):
        needed_columns = ["Name", "StartDate", "OOSDate", "EndDate", "_id"]
        p1 = track_df.loc[:, track_df.columns.str.startswith("weight")]
        p2 = track_df.loc[:, needed_columns]
        sub_track_df = pd.concat([p2, p1], axis=1)
        return sub_track_df

    def construct_forward_series(self, track_df, f1, f2, **kwargs):
        rs_list = track_df["rs"].values
        w_list = track_df["weight"].values

        dfc = get_df_combined_from_rs_list(rs_list=rs_list, d1=f1, d2=f2)
        allocated_df = dfc * w_list
        allocated_df = allocated_df.fillna(0)
        portfolio_df = pd.DataFrame(allocated_df.sum(axis=1), columns=["pret"])
        portfolio_df["pcret"] = cumulative_returns(portfolio_df["pret"])
        return portfolio_df.copy()

    # if self.meta_df.shape[0] > 0:
    #     self.Select(**kwargs)
    #     self.ExcludeZeroVariance(**kwargs)
    #     self.Allocate(**kwargs)

    # if not gen_weight:
    #     self.BackwardTest(b1 = a1, b2 = a2)
    #     # self.ForwardTest(**kwargs)
    #     self.ForwardTest(f1 = f1, f2 = f2)
    #     self.Evaluate()

    # self.format_meta_df()

    # Debug


#         try:
#             if self.meta_df.shape[0] > 0:
#                 self.Select(**kwargs)
#                 self.ExcludeZeroVariance(**kwargs)
#                 self.Allocate(**kwargs)

#             if not gen_weight:
#                 self.ForwardTest(**kwargs)
#                 self.Evaluate()

#             self.format_meta_df()
#         except Exception as err:
#             print("Debug:", err)

# @timeit
# def ForwardTest(self, f1, f2, **kwargs):
#     rs_list = self.meta_df["rs"].values
#     w_list = self.meta_df["weight"].values

#     dfc = get_df_combined_from_rs_list(rs_list = rs_list, d1 = f1, d2 = f2)
#     allocated_df = dfc*w_list
#     allocated_df = allocated_df.fillna(0)
#     portfolio_df = pd.DataFrame(allocated_df.sum(axis = 1), columns = ["pret"])
#     portfolio_df["pcret"] = cumulative_returns(portfolio_df["pret"])

#     self.portfolio_df = portfolio_df.copy()

# @timeit
# def BackwardTest(self, b1, b2, **kwargs):
#     rs_list = self.meta_df["rs"].values
#     w_list = self.meta_df["weight"].values

#     dfc = get_df_combined_from_rs_list(rs_list = rs_list, d1 = b1, d2 = b2)

#     # todel1
#     self.debug1 = dfc.copy()
#     self.debug2 = self.meta_df["weight"]
#     # todel2

#     allocated_df = dfc*w_list
#     allocated_df = allocated_df.fillna(0)
#     portfolio_df = pd.DataFrame(allocated_df.sum(axis = 1), columns = ["pret"])
#     portfolio_df["pcret"] = cumulative_returns(portfolio_df["pret"])

#     self.is_portfolio_df = portfolio_df.copy()

# @timeit
# def Evaluate(self):
#     rs = RSeries()
#     df = self.portfolio_df[["pret"]]
#     rs.load_custom_series(df, custom_series_name = "PortfolioSegment", series_type = "PortfolioSegment")
#     metrics = rs.get_metrics_by_date(d1 = df.index[0], d2 = df.index[-1])
#     self.oos_metrics = metrics.copy()

#     rs = RSeries()
#     df = self.is_portfolio_df[["pret"]]
#     rs.load_custom_series(df, custom_series_name = "PortfolioSegment", series_type = "PortfolioSegment")
#     metrics = rs.get_metrics_by_date(d1 = df.index[0], d2 = df.index[-1])
#     self.is_metrics = metrics.copy()

# def format_meta_df(self):
#     mdf = self.meta_df.copy()
#     mdf_rs = self.exclude_sample_meta_df
#     mdf_e1 = self.exclude_corr_meta_df
#     mdf_e2 = self.exclude_season_meta_df
#     mdf_es = self.exclude_select_meta_df
#     mdf_is = self.exclude_is_meta_df
#     mdf_ezv = self.exclude_zerovariance_meta_df

#     mdf["status"] = "selected"

#     mdf_rs["status"] = "exclude_sample"
#     mdf_rs["weight"] = 0
#     mdf_e1["status"] = "exclude_corr"
#     mdf_e1["weight"] = 0
#     mdf_e2["status"] = "exclude_season"
#     mdf_e2["weight"] = 0
#     mdf_es["status"] = "exclude_select"
#     mdf_es["weight"] = 0
#     mdf_is["status"] = "exclude_is"
#     mdf_is["weight"] = 0
#     mdf_ezv["status"] = "exclude_zerovariance"
#     mdf_ezv["weight"] = 0

#     mdf = pd.concat([mdf, mdf_rs, mdf_e1, mdf_e2, mdf_es, mdf_is, mdf_ezv])
#     try:
#         mdf = mdf[["Name", "_id", "User", "StartDate", "EndDate", "DateAdded", "status", "weight"]]
#     except:
#         mdf = mdf[["Name", "_id", "User", "StartDate", "EndDate", "status", "weight"]] # quick fix on ExcludeIS (disabled = 1)

#     mdf["s1"] = self.s1
#     mdf["s2"] = self.s2
#     mdf["a1"] = self.a1
#     mdf["a2"] = self.a2
#     mdf["f1"] = self.f1
#     mdf["f2"] = self.f2

#     self.clean_meta_df = mdf