def main(args=None): datasets = read_data_sets() batches = BatchRenderer( datasets.train.images, datasets.train.landmarks, datasets.train.genders, datasets.train.smiles, datasets.train.glasses, datasets.train.poses, datasets.train.all_attr, FLAGS.batch_size) nn = CNN( input_shape=[FLAGS.batch_size, szImg, szImg, 1], n_filter=[20, 40, 60, 80], n_hidden=[120], n_y=n_y, receptive_field=[[4, 4], [3, 3], [3, 3], [2, 2]], pool_size=[[2, 2], [2, 2], [2, 2], [1, 1]]) nn.train( batches, datasets.test, lr=FLAGS.lr, n_epoch=FLAGS.n_epoch, logdir=FLAGS.train_dir)
def main(args=None): datasets = read_data_sets() batches = BatchRenderer( datasets.train.images, datasets.train.landmarks, datasets.train.genders, datasets.train.smiles, datasets.train.glasses, datasets.train.poses, datasets.train.all_attr, FLAGS.batch_size) nn = CSCNN( input_shape=[FLAGS.batch_size, szImg, szImg, 1], n_filter=[20, 40, 60, 80], n_hidden=[120], n_y_landmark=n_y_landmark, n_y_attribute=n_y_attribute, receptive_field=[[4, 4], [3, 3], [3, 3], [2, 2]], pool_size=[[2, 2], [2, 2], [2, 2], [1, 1]], apply_cross_stitch=[True, True, True, True, True], apply_weight_reg=[True, True, True, True, True], attribute=attribute, logdir=logdir) nn.train( batches, datasets.test, lr=FLAGS.lr, n_epoch=FLAGS.n_epoch)