Example #1
0
def compute_model(BIDDING):
    ''' Fonction de base calculant le score du réseau'''
    df = search_biddings(BIDDING)

    X = df["leader"].values
    X = np.array([categorize_hand(h) for h in X])
    y = (df["lead"] // 13).values
    y = np.stack(np_utils.to_categorical(y, num_classes=4))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

    epochs = 15
    batch_size = 256

    model = get_model(4)
    model.fit(X_train,
              y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
    score = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0)
    print("Accuracy: ", score[1] * 100)

    Y_pred = model.predict(X_test)
    y_pred = np.argmax(Y_pred, axis=1)
    y_ = np.argmax(y_test, axis=1)

    target_names = ['S', 'H', 'D', 'C']
    print("\nCorrélation prédiction / true:\n")
    print(classification_report(y_, y_pred, target_names=target_names))
    print(confusion_matrix(y_, y_pred))
Example #2
0
def compute_model_highLow(bid):

    df = search_biddings(bid)

    X = df["leader"].values
    X = np.array([categorize_hand(h) for h in X])
    y = (df["lead"]).values
    X, y = add_color(X, y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

    epochs = 10
    batch_size = 256

    model = get_model(2, 56, (4, 14, 1))
    model.fit(X_train,
              y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
    score = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0)
    print("Accuracy: ", score[1] * 100)

    Y_pred = model.predict(X_test)
    y_pred = np.argmax(Y_pred, axis=1)
    y_ = np.argmax(y_test, axis=1)

    target_names = ['Low', 'High']
    print("\nCorrélation prédiction / true:\n")
    print(classification_report(y_, y_pred, target_names=target_names))
    print(confusion_matrix(y_, y_pred))
Example #3
0
def compute_model_8(BIDDING):

    df = search_biddings(BIDDING)

    X = df["leader"].values
    X = np.array([categorize_hand(h) for h in X])
    y = (df["lead"]).values
    y = np.stack(
        np_utils.to_categorical([classe8(lead) for lead in y], num_classes=8))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

    epochs = 20
    batch_size = 256

    model = get_model(8)
    model.fit(X_train,
              y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
    score = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0)
    print("Accuracy: ", score[1] * 100)

    Y_pred = model.predict(X_test)
    y_pred = np.argmax(Y_pred, axis=1)
    y_ = np.argmax(y_test, axis=1)

    target_names = [
        'S_low', 'S_high', 'H_low', 'H_high', 'D_low', 'D_high', 'C_low',
        'C_high'
    ]
    print("\nCorrélation prédiction / true:\n")
    print(classification_report(y_, y_pred, target_names=target_names))
    print(confusion_matrix(y_, y_pred))
Example #4
0
def main():
    BIDDINGS = [["P"]]
    #                ["1N,P,P,P", "P,1N,P,P,P", "P,P,1N,P,P,P", "P,P,P,1N,P,P,P"]]
    #                ["1N,P,P,P", "P,1N,P,P,P"],
    #                ["1N,P,P,P"],
    #                ["1N,P,2C,P,2S,P,3N,P,P,P"],
    #                ["1N,P,2C,P,2H,P,3N,P,P,P"],
    #                ["1N,P,3N,P,P,P", "P,1N,P,3N,P,P,P", "P,P,1N,P,3N,P,P,P", "P,P,P,1N,P,3N,P,P,P"]]
    #                ["1H,P,2H,P,4H,P,P,P"],
    #                ["1C,P,1H,P,1N,P,P,P"],
    #                ["1C,P,1S,P,1N,P,P,P"],
    #                ["2N,P,3N,P,P,P"]]
    #    BIDDINGS = [[x for x in data.enums.BIDSMAP]]
    for BIDDING in BIDDINGS:
        print("\n" + " - ".join(BIDDING))
        print(len(search_biddings(BIDDING)))
Example #5
0
import numpy as np
from keras.utils import np_utils
from data.parser import search_biddings
from data.tools import categorize_hand
from data.symetry import permute_shdc
from sklearn.model_selection import train_test_split
from learning.models import CNN_model

BIDDINGS = ["1N,P,P,P", "P,1N,P,P,P", "P,P,1N,P,P,P", "P,P,P,1N,P,P,P"]

df = search_biddings(BIDDINGS)

print(len(df), " deals")

X = df["leader"].values
X = np.array([categorize_hand(h) for h in X])
y = (df["lead"]).values
res = list(map(lambda x: permute_shdc(*x), zip(X, y)))

X = np.array([b for a in res for b in a[0]])
y = np.array([b for a in res for b in a[1]])
y = np.stack(np_utils.to_categorical(y))
print(len(X), "deals after generating equivalent deals")
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    test_size=0.2,
                                                    random_state=42)

batch_size = 256
epochs = 100
Example #6
0
def compute_model_long(BIDDING):
    df = search_biddings(BIDDING)

    X = df["leader"].values
    X = np.array([categorize_hand(h) for h in X])
    y = (df["lead"] // 13).values

    #######################    Sélection de certaines donnes    ####################################################
    #    Y_longest = np.array([longest_color(x) for x in X])
    #    y_longest = np.argmax(Y_longest, axis=1)
    #
    #    X_ = []
    #    Y_ = []
    #    for k in range(len(y_longest)):
    #        if y_longest[k] == y[k]:
    #            X_.append(X[k])
    #            Y_.append(y[k])
    #    X = np.array(X_)
    #    y = np.array(Y_)

    y = np.stack(np_utils.to_categorical(y, num_classes=4))

    X, y = all_symetries(X, y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

    #    epochs = max(5, min(ceil(len(X_train) / 500.), 15))
    epochs = 20
    batch_size = 256

    model = get_model(4)
    model.fit(X_train,
              y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
    score = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0)
    print("Accuracy: ", score[1] * 100)

    Y_pred = model.predict(X_test)
    y_pred = np.argmax(Y_pred, axis=1)
    y_ = np.argmax(y_test, axis=1)

    target_names = ['S', 'H', 'D', 'C']
    print("\nCorrélation prédiction / true:\n")
    print(classification_report(y_, y_pred, target_names=target_names))
    print(confusion_matrix(y_, y_pred))

    ################################    Corrélations avec la longueur   ############################################
    print("\nCorrélation prédiction / longueur :\n")
    Y_longest = np.array([longest_color(x) for x in X_test])
    print(
        classification_report(np.argmax(Y_longest, axis=1),
                              y_pred,
                              target_names=target_names))
    print(confusion_matrix(np.argmax(Y_longest, axis=1), y_pred))

    print("\nCorrélation longueur / vraie classe :\n")
    y_longest = np.argmax(Y_longest, axis=1)
    print(classification_report(y_, y_longest, target_names=target_names))
    print(confusion_matrix(y_, y_longest))

    X_ = []
    Y_ = []
    for k in range(len(y_longest)):
        if not y_longest[k] == y_[k]:
            X_.append(y_pred[k])
            Y_.append(y_[k])
    X_ = np.array(X_)
    Y_ = np.array(Y_)
    print("\nCorrélation prédiction / true lorsque true != longest:\n")
    print(classification_report(Y_, X_, target_names=target_names))
    print(confusion_matrix(Y_, X_))

    X_ = []
    Y_ = []
    for k in range(len(y_longest)):
        if not y_longest[k] == y_pred[k]:
            X_.append(y_pred[k])
            Y_.append(y_[k])
    X_ = np.array(X_)
    Y_ = np.array(Y_)
    print("\nCorrélation prédiction / true lorsque pred != longest:\n")
    print(classification_report(Y_, X_, target_names=target_names))
    print(confusion_matrix(Y_, X_))

    X_ = []
    Y_ = []
    for k in range(len(y_longest)):
        if y_[k] == y_pred[k]:
            X_.append(y_pred[k])
            Y_.append(y_longest[k])
    X_ = np.array(X_)
    Y_ = np.array(Y_)
    print("\nCorrélation prédiction / longueur lorsque pred == y_true:\n")
    print(classification_report(Y_, X_, target_names=target_names))
    print(confusion_matrix(Y_, X_))