Example #1
0
    def sampleRandomPoses(importer,
                          rng,
                          base_poses,
                          base_com,
                          base_cube,
                          num_poses,
                          aug_modes,
                          retall=False,
                          rot3D=False):
        """
        Sample random poses such that we can estimate the subspace more robustly
        :param importer: importer
        :param rng: RandomState
        :param base_poses: set of base 3D poses
        :param base_com: corresponding 3D crop locations
        :param base_cube: corresponding crop cubes
        :param num_poses: number of poses to sample
        :param aug_modes: augmentation modes (comb, com, rot, sc, none)
        :param retall: return all random parameters
        :param rot3D: augment rotation in 3D, which is only possible with poses not images
        :return: random poses
        """

        all_modes = [
            'none', 'rot', 'sc', 'com', 'rot+com', 'com+rot', 'rot+com+sc',
            'rot+sc+com', 'sc+rot+com', 'sc+com+rot', 'com+sc+rot',
            'com+rot+sc'
        ]
        assert all([aug_modes[i] in all_modes for i in xrange(len(aug_modes))])

        new_poses = numpy.zeros(
            (int(num_poses), base_poses.shape[1], base_poses.shape[2]),
            dtype=base_poses.dtype)
        new_com = numpy.zeros((int(num_poses), 3), dtype=base_poses.dtype)
        new_cube = numpy.zeros((int(num_poses), 3), dtype=base_poses.dtype)
        modes = rng.randint(0, len(aug_modes), int(num_poses))
        ridxs = rng.randint(0, base_poses.shape[0], int(num_poses))
        base_com2D = importer.joints3DToImg(base_com)
        off = rng.randn(int(num_poses), 3) * 7.
        sc = numpy.fabs(rng.randn(int(num_poses)) * 0.1 + 1.)
        rot = rng.uniform(0, 360, size=(int(num_poses), 3))

        if aug_modes == ['none']:
            if retall is True:
                return base_poses / (base_cube[:, 2] /
                                     2.)[:, None, None], base_com, base_cube
            else:
                return base_poses / (base_cube[:, 2] / 2.)[:, None, None]

        for i in xrange(int(num_poses)):
            mode = modes[i]
            ridx = ridxs[i]
            cube = base_cube[ridx]
            com3D = base_com[ridx]
            com = base_com2D[ridx]
            pose = base_poses[ridx]
            if aug_modes[mode] == 'com':
                # augment com
                new_com[i] = importer.jointImgTo3D(com + off[i])
                new_cube[i] = cube
                new_poses[i] = (pose + com3D - new_com[i]) / (new_cube[i][2] /
                                                              2.)
            elif aug_modes[mode] == 'rot':
                # augment rotation
                new_com[i] = com3D
                new_cube[i] = cube
                if rot3D is False:
                    joint_2D = importer.joints3DToImg(pose + new_com[i])
                    data_2D = rotatePoints2D(joint_2D, com[0:2], rot[i, 0])
                    new_poses[i] = (importer.jointsImgTo3D(data_2D) -
                                    new_com[i]) / (new_cube[i][2] / 2.)
                else:
                    new_poses[i] = (rotatePoints3D(
                        pose + new_com[i], new_com[i], rot[i, 0], rot[i, 1],
                        rot[i, 2]) - new_com[i]) / (new_cube[i][2] / 2.)
            elif aug_modes[mode] == 'sc':
                # augment cube
                new_com[i] = com3D
                new_cube[i] = cube * sc[i]
                new_poses[i] = pose / (new_cube[i][2] / 2.)
            elif aug_modes[mode] == 'none':
                # no augmentation
                new_com[i] = com3D
                new_cube[i] = cube
                new_poses[i] = pose / (new_cube[i][2] / 2.)
            elif aug_modes[mode] == 'rot+com' or aug_modes[mode] == 'com+rot':
                # augment com+rot
                new_com[i] = importer.jointImgTo3D(com + off[i])
                new_cube[i] = cube
                pose = (pose + com3D - new_com[i])
                if rot3D is False:
                    joint_2D = importer.joints3DToImg(pose + com3D)
                    data_2D = rotatePoints2D(
                        joint_2D,
                        importer.joint3DToImg(new_com[i])[0:2], rot[i, 0])
                    new_poses[i] = (importer.jointsImgTo3D(data_2D) -
                                    com3D) / (new_cube[i][2] / 2.)
                else:
                    new_poses[i] = (rotatePoints3D(
                        pose + new_com[i], new_com[i], rot[i, 0], rot[i, 1],
                        rot[i, 2]) - new_com[i]) / (new_cube[i][2] / 2.)
            elif aug_modes[mode] == 'rot+com+sc' or aug_modes[
                    mode] == 'rot+sc+com' or aug_modes == 'sc+rot+com' or aug_modes == 'sc+com+rot' or aug_modes == 'com+sc+rot' or aug_modes == 'com+rot+sc':
                # augment com+scale+rot
                new_com[i] = importer.jointImgTo3D(com + off[i])
                new_cube[i] = cube
                pose = (pose + com3D - new_com[i])
                pose = pose * sc[i]
                if rot3D is False:
                    joint_2D = importer.joints3DToImg(pose + com3D)
                    data_2D = rotatePoints2D(
                        joint_2D,
                        importer.joint3DToImg(new_com[i])[0:2], rot[i, 0])
                    new_poses[i] = (importer.jointsImgTo3D(data_2D) -
                                    com3D) / (new_cube[i][2] / 2.)
                else:
                    new_poses[i] = (rotatePoints3D(
                        pose + new_com[i], new_com[i], rot[i, 0], rot[i, 1],
                        rot[i, 2]) - new_com[i]) / (new_cube[i][2] / 2.)
            else:
                raise NotImplementedError()
        if retall is True:
            return new_poses, new_com, new_cube, rot
        else:
            return new_poses
Example #2
0
    def show(self, frame, handpose):
        """
        Show depth with overlaid joints
        :param frame: depth frame
        :param handpose: joint positions
        :return: image
        """
        upsample = 1.
        if 'upsample' in self.sync['config']:
            upsample = self.sync['config']['upsample']

        # plot depth image with annotations
        imgcopy = frame.copy()
        # display hack to hide nd depth
        msk = numpy.logical_and(32001 > imgcopy, imgcopy > 0)
        msk2 = numpy.logical_or(imgcopy == 0, imgcopy == 32001)
        min = imgcopy[msk].min()
        max = imgcopy[msk].max()
        imgcopy = (imgcopy - min) / (max - min) * 255.
        imgcopy[msk2] = 255.
        imgcopy = imgcopy.astype('uint8')
        imgcopy = cv2.cvtColor(imgcopy, cv2.COLOR_GRAY2BGR)

        if not numpy.allclose(upsample, 1):
            imgcopy = cv2.resize(imgcopy,
                                 dsize=None,
                                 fx=upsample,
                                 fy=upsample,
                                 interpolation=cv2.INTER_LINEAR)

        if handpose.shape[0] == 16:
            hpe = ICVLHandposeEvaluation(numpy.zeros((3, 3)),
                                         numpy.zeros((3, 3)))
        elif handpose.shape[0] == 14:
            hpe = NYUHandposeEvaluation(numpy.zeros((3, 3)), numpy.zeros(
                (3, 3)))
        elif handpose.shape[0] == 21:
            hpe = MSRAHandposeEvaluation(numpy.zeros((3, 3)),
                                         numpy.zeros((3, 3)))
        else:
            raise ValueError("Invalid number of joints {}".format(
                handpose.shape[0]))

        jtI = self.importer.joints3DToImg(handpose)
        jtI[:,
            0:2] -= numpy.asarray([frame.shape[0] // 2, frame.shape[1] // 2])
        jtI[:, 0:2] *= upsample
        jtI[:, 0:2] += numpy.asarray(
            [imgcopy.shape[0] // 2, imgcopy.shape[1] // 2])
        for i in range(handpose.shape[0]):
            cv2.circle(imgcopy, (jtI[i, 0], jtI[i, 1]), 3, (255, 0, 0), -1)

        for i in range(len(hpe.jointConnections)):
            cv2.line(imgcopy, (jtI[hpe.jointConnections[i][0],
                                   0], jtI[hpe.jointConnections[i][0], 1]),
                     (jtI[hpe.jointConnections[i][1],
                          0], jtI[hpe.jointConnections[i][1], 1]),
                     255. * hpe.jointConnectionColors[i], 2)

        # comI = self.importer.joint3DToImg(com3D)
        # comI[0:2] -= numpy.asarray([frame.shape[0]//2, frame.shape[1]//2])
        # comI[0:2] *= upsample
        # comI[0:2] += numpy.asarray([imgcopy.shape[0]//2, imgcopy.shape[1]//2])
        # cv2.circle(imgcopy, (comI[0], comI[1]), 3, (0, 255, 0), 1)

        poseimg = numpy.zeros_like(imgcopy)
        # rotate 3D pose and project to 2D
        jtP = self.importer.joints3DToImg(
            rotatePoints3D(handpose, handpose[self.importer.crop_joint_idx],
                           0., 90., 0.))
        jtP[:,
            0:2] -= numpy.asarray([frame.shape[0] // 2, frame.shape[1] // 2])
        jtP[:, 0:2] *= upsample
        jtP[:, 0:2] += numpy.asarray(
            [imgcopy.shape[0] // 2, imgcopy.shape[1] // 2])
        for i in range(handpose.shape[0]):
            cv2.circle(poseimg, (jtP[i, 0], jtP[i, 1]), 3, (255, 0, 0), -1)

        for i in range(len(hpe.jointConnections)):
            cv2.line(poseimg, (jtP[hpe.jointConnections[i][0],
                                   0], jtP[hpe.jointConnections[i][0], 1]),
                     (jtP[hpe.jointConnections[i][1],
                          0], jtP[hpe.jointConnections[i][1], 1]),
                     255. * hpe.jointConnectionColors[i], 2)

        # comP = self.importer.joint3DToImg(rotatePoint3D(com3D, handpose[self.importer.crop_joint_idx], 0., 90., 0.))
        # comP[0:2] -= numpy.asarray([frame.shape[0]//2, frame.shape[1]//2])
        # comP[0:2] *= upsample
        # comP[0:2] += numpy.asarray([imgcopy.shape[0]//2, imgcopy.shape[1]//2])
        # cv2.circle(poseimg, (comP[0], comP[1]), 3, (0, 255, 0), 1)

        return imgcopy, poseimg