Example #1
0
def b_Bicubic(variable, scale):
    B, C, H, W = variable.size()
    H_new = int(H / scale)
    W_new = int(W / scale)
    tensor_v = variable.view((B, C, H, W))
    re_tensor = imresize(tensor_v, 1 / scale)
    return re_tensor
Example #2
0
def b_CPUVar_Bicubic(variable, scale):
    B, C, H, W = variable.size()
    H_new = int(H / scale)
    W_new = int(W / scale)
    tensor_v = variable.view((B, C, H, W))
    re_tensor = torch.zeros((B, C, H_new, W_new))
    for i in range(B):
        re_tensor[i] = imresize(tensor_v[i], 1 / scale)
    return re_tensor
Example #3
0
idx = 0
for path in glob.glob(test_img_folder + '**/*.TIF'):
    idx += 1
    basename = os.path.basename(path)
    base = os.path.splitext(basename)[0]
    print(idx, base)
    # read image
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
    img = modcrop(img, 8)
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()

    # matlab imresize
    # the implementation is slower than matlab, can use matlab to generate first
    img_LR = imresize(img / 255, 1 / 4, antialiasing=True)

    if args.thirty:
        img = imresize(img_LR, 8, antialiasing=True) * 255
        # from 256 to 512
    else:
        img = imresize(img_LR, 4, antialiasing=True) * 255

    img[0] -= 103.939
    img[1] -= 116.779
    img[2] -= 123.68
    img = img.unsqueeze(0)
    img = img.cuda()
    output = seg_model(img).detach().float().cpu().squeeze_()

    # prob
Example #4
0
    def __getitem__(self, index):
        HR_path, LR_path = None, None
        scale = self.opt['scale']
        HR_size = self.opt['HR_size']

        # get HR image
        HR_path = self.paths_HR[index]
        img_HR = util.read_img(self.HR_env, HR_path)
        # modcrop in the validation / test phase
        if self.opt['phase'] != 'train':
            img_HR = util.modcrop(img_HR, scale)
        # change color space if necessary
        if self.opt['color']:
            img_HR = util.channel_convert(img_HR.shape[2], self.opt['color'], [img_HR])[0]

        if self.opt['resize'] < 1:
            print('Resize by %.2f' % self.opt['resize'])
            img_HR = cv2.resize(img_HR, None, fx=self.opt['resize'], fy=self.opt['resize'], interpolation=cv2.INTER_LINEAR)

        # print(img_HR.shape)

        # get LR image
        if self.paths_LR:
            LR_path = self.paths_LR[index]
            img_LR = util.read_img(self.LR_env, LR_path)
        else:  # down-sampling on-the-fly
            # randomly scale during training
            if self.opt['phase'] == 'train':
                random_scale = random.choice(self.random_scale_list)
                H_s, W_s, _ = img_HR.shape

                def _mod(n, random_scale, scale, thres):
                    rlt = int(n * random_scale)
                    rlt = (rlt // scale) * scale
                    return thres if rlt < thres else rlt

                H_s = _mod(H_s, random_scale, scale, HR_size)
                W_s = _mod(W_s, random_scale, scale, HR_size)
                img_HR = cv2.resize(np.copy(img_HR), (W_s, H_s), interpolation=cv2.INTER_LINEAR)
                # force to 3 channels
                if img_HR.ndim == 2:
                    img_HR = cv2.cvtColor(img_HR, cv2.COLOR_GRAY2BGR)

            H, W, _ = img_HR.shape

            if self.opt['downsample'] == 'cubic':
                img_LR = cv2.resize(img_HR, dsize=None, fx=1.0/scale, fy=1.0/scale, interpolation=cv2.INTER_CUBIC)
            elif self.opt['downsample'] == 'numpy':
                img_LR = util.imresize_np(img_HR, 1 / scale, True)
            elif self.opt['downsample'] == 'linear':
                img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale, interpolation=cv2.INTER_LINEAR)
            if img_LR.ndim == 2:
                img_LR = np.expand_dims(img_LR, axis=2)

        # print(img_HR.shape)
        # print(img_LR.shape)

        if self.opt['phase'] == 'train':
            # if the image size is too small
            H, W, _ = img_HR.shape
            if H < HR_size or W < HR_size or not self.opt['crop']:
                img_HR = cv2.resize(
                    np.copy(img_HR), (HR_size, HR_size), interpolation=cv2.INTER_LINEAR)
                # using matlab imresize
                if self.opt['downsample'] == 'cubic':
                    img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale,
                                        interpolation=cv2.INTER_CUBIC)
                elif self.opt['downsample'] == 'numpy':
                    img_LR = util.imresize_np(img_HR, 1 / scale, True)
                elif self.opt['downsample'] == 'linear':
                    img_LR = cv2.resize(img_HR, dsize=None, fx=1.0 / scale, fy=1.0 / scale,
                                        interpolation=cv2.INTER_LINEAR)
                #
                # img_LR = util.imresize_np(img_HR, 1 / scale, True)
                if img_LR.ndim == 2:
                    img_LR = np.expand_dims(img_LR, axis=2)

            H, W, C = img_LR.shape
            LR_size = HR_size // scale

            # randomly crop
            if self.opt['crop']:
                rnd_h = random.randint(0, max(0, H - LR_size))
                rnd_w = random.randint(0, max(0, W - LR_size))
                img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
                rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
                img_HR = img_HR[rnd_h_HR:rnd_h_HR + HR_size, rnd_w_HR:rnd_w_HR + HR_size, :]

            # augmentation - flip, rotate
            img_LR, img_HR = util.augment([img_LR, img_HR], self.opt['use_flip'], \
                self.opt['use_rot'])

            if self.LR_random_fuzzy is not None:
                random_fuzzy = random.choice(self.LR_random_fuzzy)
                assert self.opt['downsample'] == 'numpy'
                init_LR = np.copy(img_LR)
                img_LR = util.imresize(img_LR, random_fuzzy, True)
                img_LR = util.imresize(img_LR, 1 / random_fuzzy, True)
                if img_LR.shape[0] != LR_size or img_LR.shape[1] != LR_size:
                    print('Warning: LR shape changed after random fuzzy. Using initial one.', img_LR.shape[0], img_LR.shape[1], LR_size)
                    img_LR = init_LR

        # change color space if necessary
        if self.opt['color']:
            img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # TODO during val no definetion

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_HR.shape[2] == 3:
            img_HR = img_HR[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        img_HR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        # return: 0-1
        if LR_path is None:
            LR_path = HR_path
        return {'LR': img_LR, 'HR': img_HR, 'LR_path': LR_path, 'HR_path': HR_path}
Example #5
0
idx = 0
for path in glob.glob(test_img_folder + '/*'):
    idx += 1
    basename = os.path.basename(path)
    base = os.path.splitext(basename)[0]
    print(idx, base)
    # read image
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
    img = modcrop(img, 8)
    img = img * 1.0 / 255
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
    # matlab imresize
    img_LR = imresize(img, 1 / 4, antialiasing=True)
    img_LR = img_LR.unsqueeze(0)
    img_LR = img_LR.cuda()

    # read seg
    seg = torch.load(os.path.join(test_prob_path, base + '_bic.pth'))
    seg = seg.unsqueeze(0)
    # change probability
    # seg.fill_(0)
    # seg[:,5].fill_(1)

    seg = seg.cuda()

    output = model((img_LR, seg)).data
    output = util.tensor2img_np(output.squeeze())
    util.save_img_np(output, os.path.join(save_result_path, base + '_rlt.png'))
Example #6
0
    def __getitem__(self, index):
        if self.opt["data_type"] == "lmdb":
            if (self.GT_env is None) or (self.LR_env is None):
                self._init_lmdb()

        GT_path, LR_path = None, None
        scale = self.opt["scale"]
        GT_size = self.opt["GT_size"]
        LR_size = self.opt["LR_size"]

        # get GT image
        GT_path = self.GT_paths[index]
        if self.opt["data_type"] == "lmdb":
            resolution = [int(s) for s in self.GT_sizes[index].split("_")]
        else:
            resolution = None
        img_GT = util.read_img(
            self.GT_env, GT_path,
            resolution)  # return: Numpy float32, HWC, BGR, [0,1]

        # modcrop in the validation / test phase
        if self.opt["phase"] != "train":
            img_GT = util.modcrop(img_GT, scale)

        # get LR image
        if self.LR_paths:  # LR exist
            LR_path = self.LR_paths[index]
            if self.opt["data_type"] == "lmdb":
                resolution = [int(s) for s in self.LR_sizes[index].split("_")]
            else:
                resolution = None
            img_LR = util.read_img(self.LR_env, LR_path, resolution)
        else:  # down-sampling on-the-fly
            # randomly scale during training
            if self.opt["phase"] == "train":
                random_scale = random.choice(self.random_scale_list)
                H_s, W_s, _ = img_GT.shape

                def _mod(n, random_scale, scale, thres):
                    rlt = int(n * random_scale)
                    rlt = (rlt // scale) * scale
                    return thres if rlt < thres else rlt

                H_s = _mod(H_s, random_scale, scale, GT_size)
                W_s = _mod(W_s, random_scale, scale, GT_size)
                img_GT = cv2.resize(np.copy(img_GT), (W_s, H_s),
                                    interpolation=cv2.INTER_LINEAR)
                # force to 3 channels
                if img_GT.ndim == 2:
                    img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR)

            H, W, _ = img_GT.shape
            # using matlab imresize
            img_LR = util.imresize(img_GT, 1 / scale, True)
            if img_LR.ndim == 2:
                img_LR = np.expand_dims(img_LR, axis=2)

        if self.opt["phase"] == "train":
            H, W, C = img_LR.shape
            assert LR_size == GT_size // scale, "GT size does not match LR size"

            # randomly crop
            rnd_h = random.randint(0, max(0, H - LR_size))
            rnd_w = random.randint(0, max(0, W - LR_size))
            img_LR = img_LR[rnd_h:rnd_h + LR_size, rnd_w:rnd_w + LR_size, :]
            rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale)
            img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size,
                            rnd_w_GT:rnd_w_GT + GT_size, :]

            # augmentation - flip, rotate
            img_LR, img_GT = util.augment(
                [img_LR, img_GT],
                self.opt["use_flip"],
                self.opt["use_rot"],
                self.opt["mode"],
            )

        # change color space if necessary
        if self.opt["color"]:
            img_LR = util.channel_convert(
                C, self.opt["color"],
                [img_LR])[0]  # TODO during val no definition
            img_GT = util.channel_convert(img_GT.shape[2], self.opt["color"],
                                          [img_GT])[0]

        # BGR to RGB, HWC to CHW, numpy to tensor
        if img_GT.shape[2] == 3:
            img_GT = img_GT[:, :, [2, 1, 0]]
            img_LR = img_LR[:, :, [2, 1, 0]]
        img_GT = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float()
        img_LR = torch.from_numpy(
            np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float()

        if LR_path is None:
            LR_path = GT_path

        return {
            "LQ": img_LR,
            "GT": img_GT,
            "LQ_path": LR_path,
            "GT_path": GT_path
        }
Example #7
0
def generate_mod_LR_bic():
    # set parameters
    up_scale = 4
    mod_scale = 4
    # set data dir
    sourcedir = "/data/DIV2K_Flickr2K/source/"
    savedir = "/data/DIV2K_Flickr2K/"

    saveHRpath = os.path.join(savedir, "HR", "x" + str(mod_scale))
    saveLRpath = os.path.join(savedir, "LR", "x" + str(up_scale))
    saveBicpath = os.path.join(savedir, "Bic", "x" + str(up_scale))

    if not os.path.isdir(sourcedir):
        print("Error: No source data found")
        exit(0)
    if not os.path.isdir(savedir):
        os.mkdir(savedir)

    if not os.path.isdir(os.path.join(savedir, "HR")):
        os.mkdir(os.path.join(savedir, "HR"))
    if not os.path.isdir(os.path.join(savedir, "LR")):
        os.mkdir(os.path.join(savedir, "LR"))
    if not os.path.isdir(os.path.join(savedir, "Bic")):
        os.mkdir(os.path.join(savedir, "Bic"))

    if not os.path.isdir(saveHRpath):
        os.mkdir(saveHRpath)
    else:
        print("It will cover " + str(saveHRpath))

    if not os.path.isdir(saveLRpath):
        os.mkdir(saveLRpath)
    else:
        print("It will cover " + str(saveLRpath))

    if not os.path.isdir(saveBicpath):
        os.mkdir(saveBicpath)
    else:
        print("It will cover " + str(saveBicpath))

    filepaths = [f for f in os.listdir(sourcedir) if f.endswith(".png")]
    num_files = len(filepaths)

    # prepare data with augementation
    for i in range(num_files):
        filename = filepaths[i]
        print("No.{} -- Processing {}".format(i, filename))
        # read image
        image = cv2.imread(os.path.join(sourcedir, filename))

        width = int(np.floor(image.shape[1] / mod_scale))
        height = int(np.floor(image.shape[0] / mod_scale))
        # modcrop
        if len(image.shape) == 3:
            image_HR = image[0:mod_scale * height, 0:mod_scale * width, :]
        else:
            image_HR = image[0:mod_scale * height, 0:mod_scale * width]
        # LR
        image_LR = imresize(image_HR, 1 / up_scale, True)
        # bic
        image_Bic = imresize(image_LR, up_scale, True)

        cv2.imwrite(os.path.join(saveHRpath, filename), image_HR)
        cv2.imwrite(os.path.join(saveLRpath, filename), image_LR)
        cv2.imwrite(os.path.join(saveBicpath, filename), image_Bic)
def generate_mod_LR_bic():
    # set parameters
    up_scale = 4
    mod_scale = 4
    # set data dir
    sourcedir = "/data/Set5/source/"
    savedir = "/data/Set5/"

    # load PCA matrix of enough kernel
    print("load PCA matrix")
    pca_matrix = torch.load(
        "../../pca_matrix.pth", map_location=lambda storage, loc: storage
    )
    print("PCA matrix shape: {}".format(pca_matrix.shape))

    degradation_setting = {
        "random_kernel": False,
        "code_length": 10,
        "ksize": 21,
        "pca_matrix": pca_matrix,
        "scale": up_scale,
        "cuda": True,
        "rate_iso", 1.0
    }

    # set random seed
    util.set_random_seed(0)

    saveHRpath = os.path.join(savedir, "HR", "x" + str(mod_scale))
    saveLRpath = os.path.join(savedir, "LR", "x" + str(up_scale))
    saveBicpath = os.path.join(savedir, "Bic", "x" + str(up_scale))
    saveLRblurpath = os.path.join(savedir, "LRblur", "x" + str(up_scale))

    if not os.path.isdir(sourcedir):
        print("Error: No source data found")
        exit(0)
    if not os.path.isdir(savedir):
        os.mkdir(savedir)

    if not os.path.isdir(os.path.join(savedir, "HR")):
        os.mkdir(os.path.join(savedir, "HR"))
    if not os.path.isdir(os.path.join(savedir, "LR")):
        os.mkdir(os.path.join(savedir, "LR"))
    if not os.path.isdir(os.path.join(savedir, "Bic")):
        os.mkdir(os.path.join(savedir, "Bic"))
    if not os.path.isdir(os.path.join(savedir, "LRblur")):
        os.mkdir(os.path.join(savedir, "LRblur"))

    if not os.path.isdir(saveHRpath):
        os.mkdir(saveHRpath)
    else:
        print("It will cover " + str(saveHRpath))

    if not os.path.isdir(saveLRpath):
        os.mkdir(saveLRpath)
    else:
        print("It will cover " + str(saveLRpath))

    if not os.path.isdir(saveBicpath):
        os.mkdir(saveBicpath)
    else:
        print("It will cover " + str(saveBicpath))

    if not os.path.isdir(saveLRblurpath):
        os.mkdir(saveLRblurpath)
    else:
        print("It will cover " + str(saveLRblurpath))

    filepaths = sorted([f for f in os.listdir(sourcedir) if f.endswith(".png")])
    print(filepaths)
    num_files = len(filepaths)

    # kernel_map_tensor = torch.zeros((num_files, 1, 10)) # each kernel map: 1*10

    # prepare data with augementation
    
    for i in range(num_files):
        filename = filepaths[i]
        print("No.{} -- Processing {}".format(i, filename))
        # read image
        image = cv2.imread(os.path.join(sourcedir, filename))

        width = int(np.floor(image.shape[1] / mod_scale))
        height = int(np.floor(image.shape[0] / mod_scale))
        # modcrop
        if len(image.shape) == 3:
            image_HR = image[0 : mod_scale * height, 0 : mod_scale * width, :]
        else:
            image_HR = image[0 : mod_scale * height, 0 : mod_scale * width]
        # LR_blur, by random gaussian kernel
        img_HR = util.img2tensor(image_HR)
        C, H, W = img_HR.size()
        
        for sig in np.linspace(1.8, 3.2, 8):

            prepro = util.SRMDPreprocessing(sig=sig, **degradation_setting)

            LR_img, ker_map = prepro(img_HR.view(1, C, H, W))
            image_LR_blur = util.tensor2img(LR_img)
            cv2.imwrite(os.path.join(saveLRblurpath, 'sig{}_{}'.format(sig,filename)), image_LR_blur)
            cv2.imwrite(os.path.join(saveHRpath, 'sig{}_{}'.format(sig,filename)), image_HR)
        # LR
        image_LR = imresize(image_HR, 1 / up_scale, True)
        # bic
        image_Bic = imresize(image_LR, up_scale, True)

        # cv2.imwrite(os.path.join(saveHRpath, filename), image_HR)
        cv2.imwrite(os.path.join(saveLRpath, filename), image_LR)
        cv2.imwrite(os.path.join(saveBicpath, filename), image_Bic)

        # kernel_map_tensor[i] = ker_map
    # save dataset corresponding kernel maps
    # torch.save(kernel_map_tensor, './Set5_sig2.6_kermap.pth')
    print("Image Blurring & Down smaple Done: X" + str(up_scale))