Example #1
0
def eval_recu(epoch):
    assert config.batch_size == 1
    model.eval()
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    test_or_valid = 'test'
    test_or_valid = 'valid'
    # test_or_valid = 'train'
    print(('Test or valid:', test_or_valid))
    eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX,
                                 config.MAX_MIX)
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    while True:
        print(('-' * 30))
        eval_data = next(eval_data_gen)
        if eval_data == False:
            print(('SDR_aver_eval_epoch:', SDR_SUM.mean()))
            print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean()))
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']]
        raw_tgt = eval_data['batch_order']
        feas_tgt = models.rank_feas(
            raw_tgt, eval_data['multi_spk_fea_list'])  # 这里是目标的图谱

        src_original = src.transpose(0, 1)  #To T,bs,F
        predict_multi_mask_all = None
        samples_list = []
        for len_idx in range(config.MIN_MIX + 2, 2, -1):  #逐个分离
            tgt_max_len = len_idx  # 4,3,2 with bos and eos.
            topk_k = len_idx - 2
            tgt = Variable(torch.ones(
                len_idx, config.batch_size))  # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。
            src_len = Variable(
                torch.LongTensor(config.batch_size).zero_() +
                mix_speech_len).unsqueeze(0)
            tgt_len = Variable(
                torch.LongTensor([
                    tgt_max_len - 2
                    for one_spk in eval_data['multi_spk_fea_list']
                ])).unsqueeze(0)
            if use_cuda:
                src = src.cuda().transpose(0, 1)  # to T,bs,fre
                src_original = src_original.cuda()  # TO T,bs,fre
                tgt = tgt.cuda()
                src_len = src_len.cuda()
                tgt_len = tgt_len.cuda()
                feas_tgt = feas_tgt.cuda()

            # try:
            if len(opt.gpus) > 1:
                samples, alignment, hiddens, predicted_masks = model.module.beam_sample(
                    src, src_len, dict_spk2idx, tgt, config.beam_size,
                    src_original)
            else:
                samples, predicted_masks = model.beam_sample(
                    src, src_len, dict_spk2idx, tgt, config.beam_size,
                    src_original)

            # except:
            #     continue

            # '''
            # expand the raw mixed-features to topk_max channel.
            src = src_original.transpose(0, 1)  #确保分离的时候用的是原始的语音
            siz = src.size()
            assert len(siz) == 3
            topk_max = topk_k
            x_input_map_multi = torch.unsqueeze(src, 1).expand(
                siz[0], topk_max, siz[1], siz[2])
            if 0 and config.WFM:
                feas_tgt = x_input_map_multi.data * WFM_mask

            if len_idx == 4:
                aim_feas = list(range(0, 2 * config.batch_size,
                                      2))  #每个samples的第一个说话人取出来
                predict_multi_mask_all = predicted_masks  #bs*topk,T,F
                src = src * (1 - predicted_masks[aim_feas]
                             )  #调整到bs为第一维,# bs,T,F
                samples_list = samples
            elif len_idx == 3:
                aim_feas = list(range(1, 2 * config.batch_size,
                                      2))  #每个samples的第二个说话人取出来
                predict_multi_mask_all[aim_feas] = predicted_masks
                feas_tgt = feas_tgt[aim_feas]
                samples_list = [samples_list[:1] + samples]

            if test_or_valid != 'test':
                if 1 and len(opt.gpus) > 1:
                    ss_loss = model.module.separation_loss(
                        x_input_map_multi,
                        predicted_masks,
                        feas_tgt,
                    )
                else:
                    ss_loss = model.separation_loss(x_input_map_multi,
                                                    predicted_masks, feas_tgt)
                print(('loss for ss,this batch:', ss_loss.cpu().item()))
                lera.log({
                    'ss_loss_' + str(len_idx) + test_or_valid:
                    ss_loss.cpu().item(),
                })
                del ss_loss

        predicted_masks = predict_multi_mask_all
        if batch_idx <= (500 / config.batch_size
                         ):  # only the former batches counts the SDR
            predicted_maps = predicted_masks * x_input_map_multi
            # predicted_maps=Variable(feas_tgt)
            utils.bss_eval2(config,
                            predicted_maps,
                            eval_data['multi_spk_fea_list'],
                            raw_tgt,
                            eval_data,
                            dst='batch_output_test')
            del predicted_maps, predicted_masks, x_input_map_multi
            try:
                sdr_aver_batch, sdri_aver_batch = bss_test.cal(
                    'batch_output_test/')
                SDR_SUM = np.append(SDR_SUM, sdr_aver_batch)
                SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch)
            except (AssertionError):
                print('Errors in calculating the SDR')
            print(('SDR_aver_now:', SDR_SUM.mean()))
            print(('SDRi_aver_now:', SDRi_SUM.mean()))
            lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()})
            lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()})
            writer.add_scalars('scalar/loss',
                               {'SDR_sample_' + test_or_valid: sdr_aver_batch},
                               updates)
            # raw_input('Press any key to continue......')

        # '''
        candidate += [
            convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>'])
            for s in samples_list
        ]
        # source += raw_src
        reference += raw_tgt
        print(('samples:', samples))
        print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:],
                                         reference[-1 * config.batch_size:])))
        # alignments += [align for align in alignment]
        batch_idx += 1
        input('wait to continue......')

        result = utils.eval_metrics(reference, candidate, dict_spk2idx,
                                    log_path)
        print((
            'hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f'
            % (
                result['hamming_loss'],
                result['micro_f1'],
                result['micro_recall'],
                result['micro_precision'],
            )))

    score = {}
    result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path)
    logging_csv([e, updates, result['hamming_loss'], \
                 result['micro_f1'], result['micro_precision'], result['micro_recall'],SDR_SUM.mean()])
    print(('hamming_loss: %.8f | micro_f1: %.4f' %
           (result['hamming_loss'], result['micro_f1'])))
    score['hamming_loss'] = result['hamming_loss']
    score['micro_f1'] = result['micro_f1']
    1 / 0
    return score
Example #2
0
def eval(epoch):
    # config.batch_size=1
    model.eval()
    print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1'
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    test_or_valid = 'test'
    print('Test or valid:', test_or_valid)
    eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX,
                                 config.MAX_MIX)
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    while True:
        print('-' * 30)
        eval_data = eval_data_gen.next()
        if eval_data == False:
            print('SDR_aver_eval_epoch:', SDR_SUM.mean())
            print('SDRi_aver_eval_epoch:', SDRi_SUM.mean())
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        raw_tgt = [
            sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']
        ]
        feas_tgt = models.rank_feas(
            raw_tgt, eval_data['multi_spk_fea_list'])  # 这里是目标的图谱

        top_k = len(raw_tgt[0])
        # 要保证底下这几个都是longTensor(长整数)
        # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。
        tgt = Variable(torch.ones(
            top_k + 2, config.batch_size))  # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。

        src_len = Variable(
            torch.LongTensor(config.batch_size).zero_() +
            mix_speech_len).unsqueeze(0)
        tgt_len = Variable(
            torch.LongTensor([
                len(one_spk) for one_spk in eval_data['multi_spk_fea_list']
            ])).unsqueeze(0)
        # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0)
        if config.WFM:
            tmp_size = feas_tgt.size()
            assert len(tmp_size) == 4
            feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True)
            feas_tgt_sum_square = (feas_tgt_sum *
                                   feas_tgt_sum).expand(tmp_size)
            feas_tgt_square = feas_tgt * feas_tgt
            WFM_mask = feas_tgt_square / feas_tgt_sum_square

        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()
            if config.WFM:
                WFM_mask = WFM_mask.cuda()

        if 1 and len(opt.gpus) > 1:
            samples, alignment, hiddens, predicted_masks = model.module.beam_sample(
                src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size)
        else:
            samples, alignment, hiddens, predicted_masks = model.beam_sample(
                src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size)

        # '''
        # expand the raw mixed-features to topk_max channel.
        src = src.transpose(0, 1)
        siz = src.size()
        assert len(siz) == 3
        # if samples[0][-1] != dict_spk2idx['<EOS>']:
        #     print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40
        #     break
        topk_max = len(samples[0]) - 1
        x_input_map_multi = torch.unsqueeze(src,
                                            1).expand(siz[0], topk_max, siz[1],
                                                      siz[2])
        if config.WFM:
            feas_tgt = x_input_map_multi.data * WFM_mask

        if 0 and test_or_valid == 'valid':
            if 1 and len(opt.gpus) > 1:
                ss_loss = model.module.separation_loss(
                    x_input_map_multi,
                    predicted_masks,
                    feas_tgt,
                )
            else:
                ss_loss = model.separation_loss(x_input_map_multi,
                                                predicted_masks, feas_tgt)
            print('loss for ss,this batch:', ss_loss.cpu().item())
            lera.log({
                'ss_loss_' + test_or_valid: ss_loss.cpu().item(),
            })
            del ss_loss, hiddens

        # '''''
        if batch_idx <= (500 / config.batch_size
                         ):  # only the former batches counts the SDR
            predicted_maps = predicted_masks * x_input_map_multi
            # predicted_maps=Variable(feas_tgt)
            utils.bss_eval2(config,
                            predicted_maps,
                            eval_data['multi_spk_fea_list'],
                            raw_tgt,
                            eval_data,
                            dst='batch_output')
            del predicted_maps, predicted_masks, x_input_map_multi
            try:
                SDR_SUM, SDRi_SUM = np.append(SDR_SUM,
                                              bss_test.cal('batch_output/'))
            except AssertionError, wrong_info:
                print 'Errors in calculating the SDR', wrong_info
            print('SDR_aver_now:', SDR_SUM.mean())
            print('SDRi_aver_now:', SDRi_SUM.mean())
            lera.log({'SDR sample' + test_or_valid: SDR_SUM.mean()})
            lera.log({'SDRi sample' + test_or_valid: SDRi_SUM.mean()})
            # raw_input('Press any key to continue......')
        elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean(
        ) > best_SDR:  # only record the best SDR once.
            print('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()))
            best_SDR = SDR_SUM.mean()
Example #3
0
def eval(epoch):
    model.eval()
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    test_or_valid = 'test'
    print 'Test or valid:', test_or_valid
    eval_data_gen = prepare_data_aim('once', test_or_valid, config.MIN_MIX,
                                     config.MAX_MIX)
    # for raw_src, src, src_len, raw_tgt, tgt, tgt_len in validloader:
    SDR_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    while True:
        # for ___ in range(2):
        print '-' * 30
        eval_data = eval_data_gen.next()
        if eval_data == False:
            print 'SDR_aver_eval_epoch:', SDR_SUM.mean()
            break  #如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        raw_tgt = [
            sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']
        ]
        feas_tgt = models.rank_feas(raw_tgt,
                                    eval_data['multi_spk_fea_list'])  #这里是目标的图谱

        top_k = len(raw_tgt[0])
        # 要保证底下这几个都是longTensor(长整数)
        # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。
        tgt = Variable(torch.ones(
            top_k + 2, config.batch_size))  # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。

        src_len = Variable(
            torch.LongTensor(config.batch_size).zero_() +
            mix_speech_len).unsqueeze(0)
        tgt_len = Variable(
            torch.LongTensor([
                len(one_spk) for one_spk in eval_data['multi_spk_fea_list']
            ])).unsqueeze(0)
        # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0)
        if config.WFM:
            tmp_size = feas_tgt.size()
            assert len(tmp_size) == 4
            feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True)
            feas_tgt_sum_square = (feas_tgt_sum *
                                   feas_tgt_sum).expand(tmp_size)
            feas_tgt_square = feas_tgt * feas_tgt
            WFM_mask = feas_tgt_square / feas_tgt_sum_square

        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()
            if config.WFM:
                WFM_mask = WFM_mask.cuda()
        try:
            if 1 and len(opt.gpus) > 1:
                # samples, alignment = model.module.sample(src, src_len)
                samples, alignment, hiddens, predicted_masks = model.module.beam_sample(
                    src,
                    src_len,
                    dict_spk2idx,
                    tgt,
                    beam_size=config.beam_size)
            else:
                samples, alignment, hiddens, predicted_masks = model.beam_sample(
                    src,
                    src_len,
                    dict_spk2idx,
                    tgt,
                    beam_size=config.beam_size)
                # samples, alignment, hiddens, predicted_masks = model.beam_sample(src, src_len, dict_spk2idx, tgt, beam_size=config.beam_size)
        except TabError, info:
            print '**************Error occurs here************:', info
            continue

        if config.top1:
            predicted_masks = torch.cat([predicted_masks, 1 - predicted_masks],
                                        1)

        # '''
        # expand the raw mixed-features to topk_max channel.
        src = src.transpose(0, 1)
        siz = src.size()
        assert len(siz) == 3
        topk_max = feas_tgt.size()[1]
        assert samples[0][-1] == dict_spk2idx['<EOS>']
        topk_max = len(samples[0]) - 1
        x_input_map_multi = torch.unsqueeze(src,
                                            1).expand(siz[0], topk_max, siz[1],
                                                      siz[2])
        if config.WFM:
            feas_tgt = x_input_map_multi.data * WFM_mask

        if test_or_valid == 'valid':
            if 1 and len(opt.gpus) > 1:
                ss_loss = model.module.separation_loss(x_input_map_multi,
                                                       predicted_masks,
                                                       feas_tgt, Var)
            else:
                ss_loss = model.separation_loss(x_input_map_multi,
                                                predicted_masks, feas_tgt)
            print 'loss for ss,this batch:', ss_loss.data[0]
            lera.log({
                'ss_loss_' + test_or_valid: ss_loss.data[0],
            })
            del ss_loss, hiddens

        # '''''
        if batch_idx <= (500 / config.batch_size
                         ):  #only the former batches counts the SDR
            predicted_maps = predicted_masks * x_input_map_multi
            # predicted_maps=Variable(feas_tgt)
            utils.bss_eval2(config,
                            predicted_maps,
                            eval_data['multi_spk_fea_list'],
                            raw_tgt,
                            eval_data,
                            dst='batch_outputjaa')
            del predicted_maps, predicted_masks, x_input_map_multi
            SDR_SUM = np.append(SDR_SUM, bss_test.cal('batch_outputjaa/'))
            print 'SDR_aver_now:', SDR_SUM.mean()
            lera.log({'SDR sample': SDR_SUM.mean()})
            # raw_input('Press any key to continue......')
        elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean(
        ) > best_SDR:  #only record the best SDR once.
            print 'Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean())
            best_SDR = SDR_SUM.mean()
            # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR))

        # '''
        candidate += [
            convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>'])
            for s in samples
        ]
        # source += raw_src
        reference += raw_tgt
        print 'samples:', samples
        print 'can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:],
                                        reference[-1 * config.batch_size:])
        alignments += [align for align in alignment]
        batch_idx += 1
Example #4
0
def eval(epoch):
    # config.batch_size=1
    model.eval()
    # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1'
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    # test_or_valid = 'test'
    test_or_valid = 'valid'
    print('Test or valid:', test_or_valid)
    eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX,
                                 config.MAX_MIX)
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    while True:
        print('-' * 30)
        eval_data = next(eval_data_gen)
        if eval_data == False:
            print('SDR_aver_eval_epoch:', SDR_SUM.mean())
            print('SDRi_aver_eval_epoch:', SDRi_SUM.mean())
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        raw_tgt = [
            sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']
        ]
        feas_tgt = models.rank_feas(
            raw_tgt, eval_data['multi_spk_fea_list'])  # 这里是目标的图谱
        padded_mixture, mixture_lengths, padded_source = eval_data['tas_zip']
        padded_mixture = torch.from_numpy(padded_mixture).float()
        mixture_lengths = torch.from_numpy(mixture_lengths)
        padded_source = torch.from_numpy(padded_source).float()

        padded_mixture = padded_mixture.cuda().transpose(0, 1)
        mixture_lengths = mixture_lengths.cuda()
        padded_source = padded_source.cuda()

        top_k = len(raw_tgt[0])
        # 要保证底下这几个都是longTensor(长整数)
        # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。
        tgt = Variable(torch.ones(
            top_k + 2, config.batch_size))  # 这里随便给一个tgt,为了测试阶段tgt的名字无所谓其实。

        src_len = Variable(
            torch.LongTensor(config.batch_size).zero_() +
            mix_speech_len).unsqueeze(0)
        tgt_len = Variable(
            torch.LongTensor([
                len(one_spk) for one_spk in eval_data['multi_spk_fea_list']
            ])).unsqueeze(0)
        # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0)
        if config.WFM:
            tmp_size = feas_tgt.size()
            #assert len(tmp_size) == 4
            feas_tgt_sum = torch.sum(feas_tgt, dim=1, keepdim=True)
            feas_tgt_sum_square = (feas_tgt_sum *
                                   feas_tgt_sum).expand(tmp_size)
            feas_tgt_square = feas_tgt * feas_tgt
            WFM_mask = feas_tgt_square / feas_tgt_sum_square

        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()
            if config.WFM:
                WFM_mask = WFM_mask.cuda()

        if 1 and len(opt.gpus) > 1:
            samples, alignment, hiddens, predicted_masks = model.module.beam_sample(
                src, src_len, dict_spk2idx, tgt, config.beam_size,
                padded_mixture)
        else:
            samples, alignment, hiddens, predicted_masks = model.beam_sample(
                src, src_len, dict_spk2idx, tgt, config.beam_size,
                padded_mixture)

        # '''
        # expand the raw mixed-features to topk_max channel.
        src = src.transpose(0, 1)
        siz = src.size()
        assert len(siz) == 3
        # if samples[0][-1] != dict_spk2idx['<EOS>']:
        #     print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40
        #     break
        topk_max = len(samples[0]) - 1
        x_input_map_multi = torch.unsqueeze(src,
                                            1).expand(siz[0], topk_max, siz[1],
                                                      siz[2])
        if config.WFM:
            feas_tgt = x_input_map_multi.data * WFM_mask

        if not config.use_tas and test_or_valid == 'valid':
            if 1 and len(opt.gpus) > 1:
                ss_loss = model.module.separation_loss(
                    x_input_map_multi,
                    predicted_masks,
                    feas_tgt,
                )
            else:
                ss_loss = model.separation_loss(x_input_map_multi,
                                                predicted_masks, feas_tgt)
            print('loss for ss,this batch:', ss_loss.cpu().item())
            # lera.log({
            #     'ss_loss_' + test_or_valid: ss_loss.cpu().item(),
            # })
            del ss_loss, hiddens

        # '''''
        if batch_idx <= (100 / config.batch_size
                         ):  # only the former batches counts the SDR
            if config.use_tas:
                utils.bss_eval_tas(config,
                                   predicted_masks,
                                   eval_data['multi_spk_fea_list'],
                                   raw_tgt,
                                   eval_data,
                                   dst='batch_output1')
            else:
                predicted_maps = predicted_masks * x_input_map_multi
                utils.bss_eval2(config,
                                predicted_maps,
                                eval_data['multi_spk_fea_list'],
                                raw_tgt,
                                eval_data,
                                dst='batch_output1')
                del predicted_maps
            del predicted_masks, x_input_map_multi
            try:
                #SDR_SUM,SDRi_SUM = np.append(SDR_SUM, bss_test.cal('batch_output1/'))
                sdr_aver_batch, sdri_aver_batch = bss_test.cal(
                    'batch_output1/')
                SDR_SUM = np.append(SDR_SUM, sdr_aver_batch)
                SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch)
            except:  # AssertionError,wrong_info:
                print('Errors in calculating the SDR', wrong_info)
            print('SDR_aver_now:', SDR_SUM.mean())
            print('SDRi_aver_now:', SDRi_SUM.mean())
            # lera.log({'SDR sample'+test_or_valid: SDR_SUM.mean()})
            # lera.log({'SDRi sample'+test_or_valid: SDRi_SUM.mean()})
            # raw_input('Press any key to continue......')
        elif batch_idx == (500 / config.batch_size) + 1 and SDR_SUM.mean(
        ) > best_SDR:  # only record the best SDR once.
            print('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean()))
            best_SDR = SDR_SUM.mean()
            # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR))

        # '''
        candidate += [
            convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>'])
            for s in samples
        ]
        # source += raw_src
        reference += raw_tgt
        print('samples:', samples)
        print('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:],
                                        reference[-1 * config.batch_size:]))
        alignments += [align for align in alignment]
        batch_idx += 1

    score = {}
    result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path)
    logging_csv([e, updates, result['hamming_loss'], \
                 result['micro_f1'], result['micro_precision'], result['micro_recall']])
    print('hamming_loss: %.8f | micro_f1: %.4f' %
          (result['hamming_loss'], result['micro_f1']))
    score['hamming_loss'] = result['hamming_loss']
    score['micro_f1'] = result['micro_f1']
    return score
Example #5
0
def eval(epoch,test_or_valid='valid'):
    # config.batch_size=1
    global updates,model
    model.eval()
    # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1'
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    print(('Test or valid:', test_or_valid))
    eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX)
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    # for iii in range(2000):
    while True:
        print(('-' * 30))
        eval_data = next(eval_data_gen)
        if eval_data == False:
            print(('SDR_aver_eval_epoch:', SDR_SUM.mean()))
            print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean()))
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']]
        raw_tgt= eval_data['batch_order']
        feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list'])  # 这里是目标的图谱

        top_k = len(raw_tgt[0])
        # 要保证底下这几个都是longTensor(长整数)
        # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。
        tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1)  # 转换成数字,然后前后加开始和结束符号。

        src_len = Variable(torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0)
        tgt_len = Variable(torch.LongTensor([len(one_spk) for one_spk in eval_data['multi_spk_fea_list']])).unsqueeze(0)
        # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0)
        if config.WFM:
            siz = src.size()  # bs,T,F
            assert len(siz) == 3
            # topk_max = config.MAX_MIX  # 最多可能的topk个数
            topk_max = 2  # 最多可能的topk个数
            x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[ 2])  # bs,topk,T,F
            feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2])

            feas_tgt_square = feas_tgt_tmp * feas_tgt_tmp
            feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(siz[0], topk_max, siz[1], siz[2])
            WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15)
            feas_tgt = x_input_map_multi.view(siz[0], -1, siz[1], siz[2]).data * WFM_mask  # bs,topk,T,F
            feas_tgt = feas_tgt.view(-1, siz[1], siz[2])  # bs*topk,T,F
            WFM_mask = WFM_mask.cuda()
            del x_input_map_multi

        elif config.PSM:
            siz = src.size()  # bs,T,F
            assert len(siz) == 3
            # topk_max = config.MAX_MIX  # 最多可能的topk个数
            topk_max = 2  # 最多可能的topk个数
            x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()  # bs,topk,T,F
            feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2])

            IRM=feas_tgt_tmp/(x_input_map_multi+1e-15)

            angle_tgt=models.rank_feas(raw_tgt, eval_data['multi_spk_angle_list']).view(siz[0],-1,siz[1],siz[2])
            angle_mix=Variable(torch.from_numpy(np.array(eval_data['mix_angle']))).unsqueeze(1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()
            ang=np.cos(angle_mix-angle_tgt)
            ang=np.clip(ang,0,None)

            # feas_tgt = x_input_map_multi *np.clip(IRM.numpy()*ang,0,1) # bs,topk,T,F
            # feas_tgt = x_input_map_multi *IRM*ang # bs,topk,T,F
            feas_tgt = feas_tgt.view(siz[0],-1,siz[1],siz[2])*ang # bs,topk,T,F
            feas_tgt = feas_tgt.view(-1, siz[1], siz[2])  # bs*topk,T,F
            del x_input_map_multi

        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()
            if config.WFM:
                WFM_mask = WFM_mask.cuda()

        predicted_masks, enc_attn_list = model(src, src_len, tgt, tgt_len,
                                               dict_spk2idx)  # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用

        print('predicted mask size:', predicted_masks.size(),'should be topk,bs,T,F') # topk,bs,T,F
        # try:

        # '''
        # expand the raw mixed-features to topk_max channel.
        src = src.transpose(0, 1)
        siz = src.size()
        assert len(siz) == 3
        # if samples[0][-1] != dict_spk2idx['<EOS>']:
        #     print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40
        #     break
        topk_max = config.MAX_MIX
        x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2])

        predicted_masks=predicted_masks.transpose(0, 1)
        # if config.WFM:
        #     feas_tgt = x_input_map_multi.data * WFM_mask

        # 注意,bs是第二维
        assert predicted_masks.shape == x_input_map_multi.shape
        assert predicted_masks.size(0) == config.batch_size

        if 1 and len(opt.gpus) > 1:
            ss_loss,best_pmt = model.module.separation_pit_loss(x_input_map_multi, predicted_masks, feas_tgt, )
        else:
            ss_loss,best_pmt = model.separation_pit_loss(x_input_map_multi, predicted_masks, feas_tgt)
        print(('loss for ss,this batch:', ss_loss.cpu().item()))
        print('best perms for this batch:', best_pmt)
        lera.log({
            'ss_loss_' + test_or_valid: ss_loss.cpu().item(),
        })
        writer.add_scalars('scalar/loss',{'ss_loss_'+test_or_valid:ss_loss.cpu().item()},updates+batch_idx)
        del ss_loss
        if batch_idx>10:
            break

        if False: #this part is to test the checkpoints sequencially.
            batch_idx += 1
            if batch_idx%100==0:
                updates=updates+1000
                opt.restore='/data1/shijing_data/2020-02-14-04:58:17/Transformer_PIT_{}.pt'.format(updates)
                print('loading checkpoint...\n', opt.restore)
                checkpoints = torch.load(opt.restore)
                model.module.load_state_dict(checkpoints['model'])
                break
            continue
        # '''''
        if 0 and batch_idx <= (500 / config.batch_size):  # only the former batches counts the SDR
            predicted_maps = predicted_masks * x_input_map_multi
            predicted_maps = predicted_maps.view(-1,mix_speech_len,speech_fre)
            # predicted_maps=Variable(feas_tgt)
            utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data,
                            dst='batch_output_test')
            # utils.bss_eval(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data,
            #                 dst='batch_output_test')
            del predicted_maps, predicted_masks, x_input_map_multi
            try:
                sdr_aver_batch, sdri_aver_batch=  bss_test.cal('batch_output_test/')
                SDR_SUM = np.append(SDR_SUM, sdr_aver_batch)
                SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch)
            except(AssertionError):
                print('Errors in calculating the SDR')
            print(('SDR_aver_now:', SDR_SUM.mean()))
            print(('SRi_aver_now:', SDRi_SUM.mean()))
            lera.log({'SDR sample'+test_or_valid: SDR_SUM.mean()})
            lera.log({'SDRi sample'+test_or_valid: SDRi_SUM.mean()})
            writer.add_scalars('scalar/loss',{'SDR_sample_'+test_or_valid:sdr_aver_batch},updates)
            # raw_input('Press any key to continue......')
        elif batch_idx == (200 / config.batch_size) + 1 and SDR_SUM.mean() > best_SDR:  # only record the best SDR once.
            print(('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean())))
            best_SDR = SDR_SUM.mean()
            # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR))

        # '''
        # candidate += [convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples]
        # source += raw_src
        # reference += raw_tgt
        # print(('samples:', samples))
        # print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:])))
        # alignments += [align for align in alignment]
        batch_idx += 1

        result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path)
        print(('hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f'
                   % (result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], )))
Example #6
0
def train(epoch):
    global e, updates, total_loss, start_time, report_total,report_correct, total_loss_sgm, total_loss_ss
    e = epoch
    model.train()
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])

    if updates<=config.warmup: #如果不在warm阶段就正常规划
       pass
    elif config.schedule and scheduler.get_lr()[0]>4e-5:
        scheduler.step()
        print(("Decaying learning rate to %g" % scheduler.get_lr()[0],updates))
        lera.log({
            'lr': [group['lr'] for group in optim.optimizer.param_groups][0],
        })

    if opt.model == 'gated':
        model.current_epoch = epoch


    train_data_gen = prepare_data('once', 'train')
    while True:
        if updates <= config.warmup:  # 如果在warm就开始warmup
            tmp_lr =  config.learning_rate * min(max(updates,1)** (-0.5),
                                             max(updates,1) * (config.warmup ** (-1.5)))
            for param_group in optim.optimizer.param_groups:
                param_group['lr'] = tmp_lr
            scheduler.base_lrs=list([group['lr'] for group in optim.optimizer.param_groups])
            if updates%100==0: #记录一下
                print(updates)
                print("Warmup learning rate to %g" % tmp_lr)
                lera.log({
                    'lr': [group['lr'] for group in optim.optimizer.param_groups][0],
                })

        train_data = next(train_data_gen)
        if train_data == False:
            print(('SDR_aver_epoch:', SDR_SUM.mean()))
            print(('SDRi_aver_epoch:', SDRi_SUM.mean()))
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch

        src = Variable(torch.from_numpy(train_data['mix_feas']))
        # raw_tgt = [spk.keys() for spk in train_data['multi_spk_fea_list']]
        # raw_tgt = [sorted(spk.keys()) for spk in train_data['multi_spk_fea_list']]
        raw_tgt=train_data['batch_order']
        feas_tgt = models.rank_feas(raw_tgt, train_data['multi_spk_fea_list'])  # 这里是目标的图谱,bs*Topk,len,fre

        # 要保证底下这几个都是longTensor(长整数)
        tgt_max_len = config.MAX_MIX + 2  # with bos and eos.
        tgt = Variable(torch.from_numpy(np.array(
            [[0] + [dict_spk2idx[spk] for spk in spks] + (tgt_max_len - len(spks) - 1) * [dict_spk2idx['<EOS>']] for
             spks in raw_tgt], dtype=np.int))).transpose(0, 1)  # 转换成数字,然后前后加开始和结束符号。
        # tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1)  # 转换成数字,然后前后加开始和结束符号。
        src_len = Variable(torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0)
        tgt_len = Variable(
            torch.LongTensor([len(one_spk) for one_spk in train_data['multi_spk_fea_list']])).unsqueeze(0)
        if config.WFM:
            siz = src.size()  # bs,T,F
            assert len(siz) == 3
            # topk_max = config.MAX_MIX  # 最多可能的topk个数
            topk_max = 2  # 最多可能的topk个数
            x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous().view(-1, siz[1], siz[ 2])  # bs,topk,T,F
            feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2])

            feas_tgt_square = feas_tgt_tmp * feas_tgt_tmp
            feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=1, keepdim=True).expand(siz[0], topk_max, siz[1], siz[2])
            WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15)
            feas_tgt = x_input_map_multi.view(siz[0], -1, siz[1], siz[2]).data * WFM_mask  # bs,topk,T,F
            feas_tgt = feas_tgt.view(-1, siz[1], siz[2])  # bs*topk,T,F
            WFM_mask = WFM_mask.cuda()
            del x_input_map_multi

        elif config.PSM:
            siz = src.size()  # bs,T,F
            assert len(siz) == 3
            # topk_max = config.MAX_MIX  # 最多可能的topk个数
            topk_max = 2  # 最多可能的topk个数
            x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()  # bs,topk,T,F
            feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2])

            IRM=feas_tgt_tmp/(x_input_map_multi+1e-15)

            angle_tgt=models.rank_feas(raw_tgt, train_data['multi_spk_angle_list']).view(siz[0],-1,siz[1],siz[2]) # bs,topk,T,F
            angle_mix=Variable(torch.from_numpy(np.array(train_data['mix_angle']))).unsqueeze(1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()
            ang=np.cos(angle_mix-angle_tgt)
            ang=np.clip(ang,0,None)

            # feas_tgt = x_input_map_multi *np.clip(IRM.numpy()*ang,0,1) # bs,topk,T,F
            # feas_tgt = x_input_map_multi *IRM*ang # bs,topk,T,F
            feas_tgt = feas_tgt.view(siz[0],-1,siz[1],siz[2])*ang # bs,topk,T,F
            feas_tgt = feas_tgt.view(-1, siz[1], siz[2])  # bs*topk,T,F
            del x_input_map_multi

        elif config.frame_mask:
            siz = src.size()  # bs,T,F
            assert len(siz) == 3
            # topk_max = config.MAX_MIX  # 最多可能的topk个数
            topk_max = 2  # 最多可能的topk个数
            x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()  # bs,topk,T,F
            feas_tgt_tmp = feas_tgt.view(siz[0], -1, siz[1], siz[2])

            feas_tgt_time=torch.sum(feas_tgt_tmp,3).transpose(1,2) #bs,T,topk
            for v1 in feas_tgt_time:
                for v2 in v1:
                    if v2[0]>v2[1]:
                        v2[0]=1
                        v2[1]=0
                    else:
                        v2[0]=0
                        v2[1]=1
            frame_mask=feas_tgt_time.transpose(1,2).unsqueeze(-1) #bs,topk,t,1
            feas_tgt=x_input_map_multi*frame_mask
            feas_tgt = feas_tgt.view(-1, siz[1], siz[2])  # bs*topk,T,F


        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()

        model.zero_grad()
        if config.use_center_loss:
            center_loss.zero_grad()

        # aim_list 就是找到有正经说话人的地方的标号
        aim_list = (tgt[1:-1].transpose(0, 1).contiguous().view(-1) != dict_spk2idx['<EOS>']).nonzero().squeeze()
        aim_list = aim_list.data.cpu().numpy()

        multi_mask, enc_attn_list = model(src, src_len, tgt, tgt_len,
                                             dict_spk2idx)  # 这里的outputs就是hidden_outputs,还没有进行最后分类的隐层,可以直接用
        print('mask size:', multi_mask.size()) # topk,bs,T,F
        # print('mask:', multi_mask[0,0,:3:3]) # topk,bs,T,F
        # writer.add_histogram('global gamma',gamma, updates)


        src = src.transpose(0, 1)
        # expand the raw mixed-features to topk_max channel.
        siz = src.size()
        assert len(siz) == 3
        topk_max = config.MAX_MIX  # 最多可能的topk个数
        x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2]).contiguous()#.view(-1, siz[1], siz[2])
        # x_input_map_multi = x_input_map_multi[aim_list]
        # x_input_map_multi = x_input_map_multi.transpose(0, 1) #topk,bs,T,F
        multi_mask = multi_mask.transpose(0, 1)
        # if config.WFM:
        #     feas_tgt = x_input_map_multi.data * WFM_mask

        # 注意,bs是第二维
        assert multi_mask.shape == x_input_map_multi.shape
        assert multi_mask.size(0) == config.batch_size

        if 1 and len(opt.gpus) > 1: #先ss获取Perm
            ss_loss, best_pmt = model.module.separation_pit_loss(x_input_map_multi, multi_mask, feas_tgt)
        else:
            ss_loss, best_pmt = model.separation_pit_loss(x_input_map_multi, multi_mask, feas_tgt)
        print('loss for SS,this batch:', ss_loss.cpu().item())
        print('best perms for this batch:', best_pmt)
        writer.add_scalars('scalar/loss',{'ss_loss':ss_loss.cpu().item()},updates)

        loss = ss_loss
        loss.backward()

        total_loss_ss += ss_loss.cpu().item()
        lera.log({
            'ss_loss': ss_loss.cpu().item(),
        })

        if updates>3 and updates % config.eval_interval in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,]:
            assert multi_mask.shape==x_input_map_multi.shape
            assert multi_mask.size(0)==config.batch_size
            predicted_maps = (multi_mask * x_input_map_multi).view(siz[0]*topk_max,siz[1],siz[2])

            # predicted_maps=Variable(feas_tgt)
            # utils.bss_eval(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path+'batch_output/')
            utils.bss_eval2(config, predicted_maps, train_data['multi_spk_fea_list'], raw_tgt, train_data, dst=log_path+'batch_output')
            del predicted_maps, multi_mask, x_input_map_multi
            sdr_aver_batch, sdri_aver_batch=  bss_test.cal(log_path+'batch_output/')
            lera.log({'SDR sample': sdr_aver_batch})
            lera.log({'SDRi sample': sdri_aver_batch})
            writer.add_scalars('scalar/loss',{'SDR_sample':sdr_aver_batch,'SDRi_sample':sdri_aver_batch},updates)
            SDR_SUM = np.append(SDR_SUM, sdr_aver_batch)
            SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch)
            print(('SDR_aver_now:', SDR_SUM.mean()))
            print(('SDRi_aver_now:', SDRi_SUM.mean()))

            # Heatmap here
            # n_layer个 (head*bs) x lq x dk
            '''
            import matplotlib.pyplot as plt
            ax = plt.gca()
            ax.invert_yaxis()

            raw_src=models.rank_feas(raw_tgt, train_data['multi_spk_fea_list'])
            att_idx=1
            att = enc_attn_list[-1].view(config.trans_n_head,config.batch_size,mix_speech_len,mix_speech_len).data.cpu().numpy()[:,att_idx]
            for head in range(config.trans_n_head):
                xx=att[head]
                plt.matshow(xx, cmap=plt.cm.hot, vmin=0,vmax=0.05)
                plt.colorbar()
                plt.savefig(log_path+'batch_output/'+'head_{}.png'.format(head))
            plt.matshow(raw_src[att_idx*2+0].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2)
            plt.colorbar()
            plt.savefig(log_path+'batch_output/'+'source0.png')
            plt.matshow(raw_src[att_idx*2+1].transpose(0,1), cmap=plt.cm.hot, vmin=0,vmax=2)
            plt.colorbar()
            plt.savefig(log_path+'batch_output/'+'source1.png')
            1/0
            '''

        total_loss += loss.cpu().item()
        optim.step()

        updates += 1
        if updates % 30 == 0:
            logging(
                "time: %6.3f, epoch: %3d, updates: %8d, train loss this batch: %6.3f,ss loss: %6.6f\n"
                % (time.time() - start_time, epoch, updates, loss , total_loss_ss / 30.0))
            total_loss_sgm, total_loss_ss = 0, 0

        # continue

        if 0 and updates % config.eval_interval == 0 and epoch > 3: #建议至少跑几个epoch再进行测试,否则模型还没学到东西,会有很多问题。
            logging("time: %6.3f, epoch: %3d, updates: %8d, train loss: %6.5f\n"
                    % (time.time() - start_time, epoch, updates, total_loss/config.eval_interval))
            print(('evaluating after %d updates...\r' % updates))
            eval(epoch,'valid') # eval的时候batch_size会变成1
            eval(epoch,'test') # eval的时候batch_size会变成1

            model.train()
            total_loss = 0
            start_time = 0
            report_total = 0
            report_correct = 0

        if 1 and updates % config.save_interval == 1:
            save_model(log_path + 'Transformer_PIT_{}.pt'.format(updates))
Example #7
0
def eval(epoch):
    # config.batch_size=1
    model.eval()
    # print '\n\n测试的时候请设置config里的batch_size为1!!!please set the batch_size as 1'
    reference, candidate, source, alignments = [], [], [], []
    e = epoch
    test_or_valid = 'test'
    test_or_valid = 'valid'
    # test_or_valid = 'train'
    print(('Test or valid:', test_or_valid))
    eval_data_gen = prepare_data('once', test_or_valid, config.MIN_MIX, config.MAX_MIX)
    SDR_SUM = np.array([])
    SDRi_SUM = np.array([])
    batch_idx = 0
    global best_SDR, Var
    # for iii in range(2000):
    while True:
        print(('-' * 30))
        eval_data = next(eval_data_gen)
        if eval_data == False:
            print(('SDR_aver_eval_epoch:', SDR_SUM.mean()))
            print(('SDRi_aver_eval_epoch:', SDRi_SUM.mean()))
            break  # 如果这个epoch的生成器没有数据了,直接进入下一个epoch
        src = Variable(torch.from_numpy(eval_data['mix_feas']))

        # raw_tgt = [sorted(spk.keys()) for spk in eval_data['multi_spk_fea_list']]
        raw_tgt= eval_data['batch_order']
        feas_tgt = models.rank_feas(raw_tgt, eval_data['multi_spk_fea_list'])  # 这里是目标的图谱

        top_k = len(raw_tgt[0])
        # 要保证底下这几个都是longTensor(长整数)
        # tgt = Variable(torch.from_numpy(np.array([[0]+[dict_spk2idx[spk] for spk in spks]+[dict_spk2idx['<EOS>']] for spks in raw_tgt],dtype=np.int))).transpose(0,1) #转换成数字,然后前后加开始和结束符号。
        tgt = Variable(torch.from_numpy(np.array([[0,1,2,102] for __ in range(config.batch_size)], dtype=np.int))).transpose(0, 1)  # 转换成数字,然后前后加开始和结束符号。

        src_len = Variable(torch.LongTensor(config.batch_size).zero_() + mix_speech_len).unsqueeze(0)
        tgt_len = Variable(torch.LongTensor([len(one_spk) for one_spk in eval_data['multi_spk_fea_list']])).unsqueeze(0)
        # tgt_len = Variable(torch.LongTensor(config.batch_size).zero_()+len(eval_data['multi_spk_fea_list'][0])).unsqueeze(0)
        if config.WFM:
            tmp_size = feas_tgt.size()
            assert len(tmp_size) == 3
            feas_tgt_square = feas_tgt * feas_tgt
            feas_tgt_sum_square = torch.sum(feas_tgt_square, dim=0, keepdim=True).expand(tmp_size)
            WFM_mask = feas_tgt_square / (feas_tgt_sum_square + 1e-15)

        if use_cuda:
            src = src.cuda().transpose(0, 1)
            tgt = tgt.cuda()
            src_len = src_len.cuda()
            tgt_len = tgt_len.cuda()
            feas_tgt = feas_tgt.cuda()
            if config.WFM:
                WFM_mask = WFM_mask.cuda()

        # try:
        if 1 and len(opt.gpus) > 1:
            samples,  predicted_masks = model.module.pit_sample(src, src_len, dict_spk2idx, tgt,
                                                                                    beam_size=config.beam_size)
        else:
            samples,  predicted_masks = model.pit_sample(src, src_len, dict_spk2idx, tgt,
                                                                             beam_size=config.beam_size)
        samples=samples.max(2)[1].data.cpu().numpy()
        # except:
        #     continue

        # '''
        # expand the raw mixed-features to topk_max channel.
        src = src.transpose(0, 1)
        siz = src.size()
        assert len(siz) == 3
        # if samples[0][-1] != dict_spk2idx['<EOS>']:
        #     print '*'*40+'\nThe model is far from good. End the evaluation.\n'+'*'*40
        #     break
        topk_max = len(samples[0]) - 1
        x_input_map_multi = torch.unsqueeze(src, 1).expand(siz[0], topk_max, siz[1], siz[2])
        if 1 and config.WFM:
            feas_tgt = x_input_map_multi.data * WFM_mask

        if test_or_valid != 'test':
            if 1 and len(opt.gpus) > 1:
                ss_loss = model.module.separation_loss(x_input_map_multi, predicted_masks, feas_tgt, )
            else:
                ss_loss = model.separation_loss(x_input_map_multi, predicted_masks, feas_tgt)
            print(('loss for ss,this batch:', ss_loss.cpu().item()))
            lera.log({
                'ss_loss_' + test_or_valid: ss_loss.cpu().item(),
            })
            del ss_loss

        # '''''
        if 1 and batch_idx <= (500 / config.batch_size):  # only the former batches counts the SDR
            predicted_maps = predicted_masks * x_input_map_multi
            # predicted_maps=Variable(feas_tgt)
            utils.bss_eval2(config, predicted_maps, eval_data['multi_spk_fea_list'], raw_tgt, eval_data,
                            dst='batch_output_test')
            del predicted_maps, predicted_masks, x_input_map_multi
            try:
                sdr_aver_batch, sdri_aver_batch=  bss_test.cal('batch_output_test/')
                SDR_SUM = np.append(SDR_SUM, sdr_aver_batch)
                SDRi_SUM = np.append(SDRi_SUM, sdri_aver_batch)
            except(AssertionError):
                print('Errors in calculating the SDR')
            print(('SDR_aver_now:', SDR_SUM.mean()))
            print(('SDRi_aver_now:', SDRi_SUM.mean()))
            lera.log({'SDR sample'+test_or_valid: SDR_SUM.mean()})
            lera.log({'SDRi sample'+test_or_valid: SDRi_SUM.mean()})
            writer.add_scalars('scalar/loss',{'SDR_sample_'+test_or_valid:sdr_aver_batch},updates)
            # raw_input('Press any key to continue......')
        elif batch_idx == (200 / config.batch_size) + 1 and SDR_SUM.mean() > best_SDR:  # only record the best SDR once.
            print(('Best SDR from {}---->{}'.format(best_SDR, SDR_SUM.mean())))
            best_SDR = SDR_SUM.mean()
            # save_model(log_path+'checkpoint_bestSDR{}.pt'.format(best_SDR))

        # '''
        candidate += [convertToLabels(dict_idx2spk, s, dict_spk2idx['<EOS>']) for s in samples]
        # source += raw_src
        reference += raw_tgt
        print(('samples:', samples))
        print(('can:{}, \nref:{}'.format(candidate[-1 * config.batch_size:], reference[-1 * config.batch_size:])))
        # alignments += [align for align in alignment]
        batch_idx += 1

        result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path)
        print(('hamming_loss: %.8f | micro_f1: %.4f |recall: %.4f | precision: %.4f'
                   % (result['hamming_loss'], result['micro_f1'], result['micro_recall'], result['micro_precision'], )))

    score = {}
    result = utils.eval_metrics(reference, candidate, dict_spk2idx, log_path)
    logging_csv([e, updates, result['hamming_loss'], \
                 result['micro_f1'], result['micro_precision'], result['micro_recall'],SDR_SUM.mean()])
    print(('hamming_loss: %.8f | micro_f1: %.4f'
          % (result['hamming_loss'], result['micro_f1'])))
    score['hamming_loss'] = result['hamming_loss']
    score['micro_f1'] = result['micro_f1']
    1/0
    return score