import numpy as np from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam from sklearn.metrics import classification_report, confusion_matrix from data import get_data_generators from utils import * from keras.models import load_model batch_size = 8 image_size = 256 epochs = [5, 15] callbacks = models.get_callbacks() class_weights = {0: 0.5, 1: 1.0} train_generator, val_generator, test_generator = get_data_generators( image_size, batch_size, 'GRY', 'abnormality', 'vgg') # model = models.create_vgg_model(image_size=256, dropout=0.5) # # print("Stage 1 - Transfer Learning:") # # model.compile(loss='binary_crossentropy', optimizer=Adam(0.001), metrics=['accuracy']) # # history = model.fit(train_generator, # steps_per_epoch=train_generator.samples // batch_size, # epochs=epochs[0], # callbacks=callbacks, # validation_data=val_generator, # validation_steps=val_generator.samples // batch_size, # class_weight=class_weights,
from keras_preprocessing.image import ImageDataGenerator import models import keras import numpy as np import pandas as pd import os from sklearn.metrics import classification_report, confusion_matrix from utils import * from data import get_data_generators from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam image_size = 128 batch_size = 16 epoch = 30 train_generator, val_generator, test_generator = get_data_generators(image_size=image_size, batch_size=batch_size, data='RGB', task='abnormality', model=None) callbacks = models.get_callbacks(folder="checkpoints/custom/") class_weights = {0: 1.0, 1: 1.0} model = models.create_custom_model3(size=image_size) model.compile(loss='binary_crossentropy', optimizer=Adam(0.001), metrics=['accuracy']) history = model.fit(train_generator,
from keras.applications.resnet50 import ResNet50 as ResNet, preprocess_input from keras_preprocessing.image import ImageDataGenerator import models import numpy as np from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam from sklearn.metrics import classification_report, confusion_matrix from data import get_data_generators from utils import * batch_size = 16 image_size = 256 epochs = [5, 15] callbacks = models.get_callbacks() train_generator, val_generator, test_generator = get_data_generators( image_size, batch_size, 'GRY', 'diagnosis-4class', 'vgg') model = models.create_vgg_model(image_size=256, dropout=0.5, classes=4) print("Stage 1:") model.compile(loss='categorical_crossentropy', optimizer=Adam(0.001), metrics=['accuracy']) history = model.fit(train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs[0], callbacks=callbacks, validation_data=val_generator, validation_steps=val_generator.samples // batch_size,
from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam from sklearn.metrics import classification_report, confusion_matrix from data import get_data_generators from utils import * batch_size = 16 image_size = 256 epochs = [3, 5, 30] callbacks = models.get_callbacks() class_weights = {0: 0.5, 1: 1.0} #opt = Adam() train_generator, val_generator, test_generator = get_data_generators( image_size, batch_size, 'GRY', 'diagnosis-2class', model='resnet') model = models.create_ResNet50_model() print("Stage 1:") model.compile(loss='binary_crossentropy', optimizer=Adam(0.001), metrics=['accuracy']) history = model.fit(train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs[0], callbacks=callbacks, validation_data=val_generator, validation_steps=val_generator.samples // batch_size,
import models import keras import numpy as np import pandas as pd import os from sklearn.metrics import classification_report, confusion_matrix from utils import * from data import get_data_generators image_size = 256 batch_size = 16 epoch = 30 train_generator, val_generator, test_generator = get_data_generators( image_size=image_size, batch_size=batch_size, data='RGB', task='diagnosis-2class', model='custom') callbacks = models.get_callbacks() class_weights = {0: 0.5, 1: 1.0} #opt = Adam() model = models.create_custom_model() # model.compile(loss='binary_crossentropy', # optimizer=opt, # metrics=['accuracy']) model.compile(loss='binary_crossentropy',