import parent import data import networks import visualize import train import inverseConsistentNet import numpy as np import torch import matplotlib.pyplot as plt import random import os import describe d1_triangles, d2_triangles = data.get_dataset_triangles("train", data_size=50, hollow=True, samples=128) # d1_triangles_test, d2_triangles_test = data.get_dataset_triangles( # "test", data_size=50, hollow=True, samples=256 # ) d1_triangles_test, d2_triangles_test = d1_triangles, d2_triangles network = networks.tallUNet2 d1, d2, d1_t, d2_t = (d1_triangles, d2_triangles, d1_triangles_test, d2_triangles_test) lmbda = 2048 random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed(1) np.random.seed(1)
import torch import matplotlib.pyplot as plt import random import os import pickle import describe import argparse parser = argparse.ArgumentParser() batch_size = 128 d1, d2 = data.get_dataset_triangles("train", data_size=50, hollow=False, batch_size=batch_size) d1_t, d2_t = data.get_dataset_triangles("test", data_size=50, hollow=False, batch_size=batch_size) lmbda = 2048 random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed(1) np.random.seed(1) print("=" * 50) net = inverseConsistentNet.InverseConsistentNet( network_wrappers.DoubleNet( network_wrappers.RandomShift(0.25),
import inverseConsistentNet import numpy as np import torch import matplotlib.pyplot as plt import random import os import describe random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed(1) np.random.seed(1) d1_triangles, d2_triangles = data.get_dataset_triangles( "train", data_size=50, hollow=False ) network = networks.FCNet d1, d2 = (d1_triangles, d2_triangles) lmbda = 2048 image_A, image_B = (x[0].cuda() for x in next(zip(d1, d2))) image_A = image_A[:1].cuda() image_B = image_B[:1].cuda() print("=" * 50) print(network, lmbda) net = inverseConsistentNet.InverseConsistentNet(network(), lmbda, image_A.size()) net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=0.00001) net.train()