Example #1
0
    def __init__(self, image_dir, label_dir, batch_size, width, height,
                 no_use_skip_connections, base_filter_size, no_use_batch_norm):

        # test data reader
        iter_items = data.img_xys_iterator(
            image_dir=image_dir,
            label_dir=label_dir,
            batch_size=batch_size,
            patch_width_height=None,  # i.e. no patchs
            distort_rgb=False,
            flip_left_right=False,
            random_rotation=False,
            repeat=False,
            width=width,
            height=height,
            one_shot=False)
        self.iter_init_op, (self.test_imgs, self.test_xys_bitmaps) = iter_items

        # build the model
        self.model = model.Model(
            self.test_imgs,
            is_training=False,
            use_skip_connections=not no_use_skip_connections,
            base_filter_size=base_filter_size,
            use_batch_norm=not no_use_batch_norm)

        # define loss ops for calculating xent
        self.model.calculate_losses_wrt(labels=self.test_xys_bitmaps)
Example #2
0
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)
with open("%s/opts.json" % ckpt_dir, "w") as f:
    f.write(json.dumps(vars(opts)))

#from tensorflow.python import debug as tf_debug
#tf.keras.backend.set_session(tf_debug.LocalCLIDebugWrapperSession(tf.Session()))

# Build readers / model for training
# training can be either patch based, or full resolution
train_imgs_xys_bitmaps = data.img_xys_iterator(
    image_dir=opts.train_image_dir,
    label_dir=opts.label_dir,
    batch_size=opts.batch_size,
    patch_width_height=opts.patch_width_height,
    distort_rgb=True,
    flip_left_right=opts.flip_left_right,
    random_rotation=opts.random_rotate,
    repeat=True,
    width=None if opts.patch_width_height else opts.width,
    height=None if opts.patch_width_height else opts.height)

# TODO: could we do all these calcs in test.pr_stats (rather than iterating twice) ??
# test images are always full res
test_imgs_xys_bitmaps = data.img_xys_iterator(image_dir=opts.test_image_dir,
                                              label_dir=opts.label_dir,
                                              batch_size=opts.batch_size,
                                              patch_width_height=None,
                                              distort_rgb=False,
                                              flip_left_right=False,
                                              random_rotation=False,
Example #3
0
                    default=None,
                    help='If set, max number of seconds to run.')
opts = parser.parse_args()
print("opts %s" % opts, file=sys.stderr)

np.set_printoptions(precision=2,
                    threshold=10000,
                    suppress=True,
                    linewidth=10000)

# Build readers for train and test data.
train_imgs, train_xys_bitmaps = data.img_xys_iterator(
    image_dir=opts.train_image_dir,
    label_dir=opts.label_dir,
    batch_size=opts.batch_size,
    patch_fraction=opts.patch_fraction,
    distort_rgb=True,
    flip_left_right=opts.flip_left_right,
    random_rotation=opts.random_rotate,
    repeat=True)
test_imgs, test_xys_bitmaps = data.img_xys_iterator(
    image_dir=opts.test_image_dir,
    label_dir=opts.label_dir,
    batch_size=1,
    patch_fraction=1,
    distort_rgb=False,
    flip_left_right=False,
    random_rotation=False,
    repeat=True)
print(test_imgs.get_shape())
print(test_xys_bitmaps.get_shape())
Example #4
0
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--image-dir', type=str, required=True)
parser.add_argument('--label-dir', type=str, required=True)
parser.add_argument('--run', type=str, required=True, help='model')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--no-use-skip-connections', action='store_true')
parser.add_argument('--no-use-batch-norm', action='store_true')
parser.add_argument('--base-filter-size', type=int, default=16)
opts = parser.parse_args()
print(opts)

# test data reader
test_imgs, test_xys_bitmaps = data.img_xys_iterator(image_dir=opts.image_dir,
                                                    label_dir=opts.label_dir,
                                                    batch_size=opts.batch_size,
                                                    patch_fraction=1,
                                                    distort_rgb=False,
                                                    flip_left_right=False,
                                                    random_rotation=False,
                                                    repeat=False)

with tf.variable_scope("train_test_model") as scope:  # clumsy :/
    model = model.Model(test_imgs,
                        is_training=False,
                        use_skip_connections=not opts.no_use_skip_connections,
                        base_filter_size=opts.base_filter_size,
                        use_batch_norm=not opts.no_use_batch_norm)
    model.calculate_losses_wrt(labels=test_xys_bitmaps,
                               batch_size=opts.batch_size)

sess = tf.Session()
model.restore(sess, "ckpts/%s" % opts.run)
Example #5
0
File: test.py Project: theemfs/bnn
parser.add_argument('--base-filter-size', type=int, default=8)
parser.add_argument('--width', type=int, default=768, help='input image width')
parser.add_argument('--height',
                    type=int,
                    default=1024,
                    help='input image height')
opts = parser.parse_args()
print(opts)

# test data reader
test_imgs, test_xys_bitmaps = data.img_xys_iterator(
    image_dir=opts.image_dir,
    label_dir=opts.label_dir,
    batch_size=opts.batch_size,
    patch_width_height=None,  # i.e. no patchs
    distort_rgb=False,
    flip_left_right=False,
    random_rotation=False,
    repeat=False,
    width=opts.width,
    height=opts.height)

model = model.Model(test_imgs,
                    is_training=False,
                    use_skip_connections=not opts.no_use_skip_connections,
                    base_filter_size=opts.base_filter_size,
                    use_batch_norm=not opts.no_use_batch_norm)
model.calculate_losses_wrt(labels=test_xys_bitmaps)

sess = tf.Session()
model.restore(sess, "ckpts/%s" % opts.run)