Example #1
0
def test_graph_scnn():
    from sklearn.metrics import accuracy_score
    A, X, Y = data.parse_nci()

    n_graphs = len(A)

    indices = np.arange(n_graphs)
    np.random.shuffle(indices)

    train_indices = indices[:n_graphs // 3]
    valid_indices = indices[n_graphs // 3:(2 * n_graphs) // 3]
    test_indices = indices[(2 * n_graphs) // 3:]

    scnn = GraphSCNN(n_hops=5)
    scnn.fit(A,
             X,
             Y,
             train_indices=train_indices,
             valid_indices=valid_indices,
             learning_rate=0.05,
             batch_size=100,
             n_epochs=500)

    preds = scnn.predict(A, X, test_indices)
    actuals = np.argmax(Y[test_indices, :], axis=1)

    print 'Accuracy: %.4f' % (accuracy_score(actuals, preds))
Example #2
0
def test_graph_scnn():
    from sklearn.metrics import accuracy_score
    A, X, Y = data.parse_nci()

    n_graphs = len(A)

    indices = np.arange(n_graphs)
    np.random.shuffle(indices)

    train_indices = indices[:n_graphs // 3]
    valid_indices = indices[n_graphs // 3:(2* n_graphs) // 3]
    test_indices  = indices[(2* n_graphs) // 3:]

    scnn = GraphSCNN(n_hops=5)
    scnn.fit(A, X, Y, train_indices=train_indices, valid_indices=valid_indices,
             learning_rate=0.05, batch_size=100, n_epochs=500)


    preds = scnn.predict(A, X, test_indices)
    actuals = np.argmax(Y[test_indices,:], axis=1)

    print 'Accuracy: %.4f' % (accuracy_score(actuals, preds))
        f1_micro = f1_score(actuals, preds, average='micro')
        f1_macro = f1_score(actuals, preds, average='macro')

        print 'form: name,micro_f,macro_f,accuracy'
        print '###RESULTS###: %s,%s,%.6f,%.8f,%.8f,%.8f' % (
            data_name, model_name, train_prop, f1_micro, f1_macro, accuracy)


if __name__ == '__main__':
    np.random.seed()

    args = sys.argv[1:]

    name_to_data = {
        'nci1':
        lambda: data.parse_nci(graph_name='nci1.graph'),
        'nci109':
        lambda: data.parse_nci(graph_name='nci109.graph'),
        'mutag':
        lambda: data.parse_nci(graph_name='mutag.graph'),
        'ptc':
        lambda: data.parse_nci(graph_name='ptc.graph'),
        'enzymes':
        lambda: data.parse_nci(graph_name='enzymes.graph'),
        'nci1struct':
        lambda: data.parse_nci(graph_name='nci1.graph',
                               with_structural_features=True),
        'nci109struct':
        lambda: data.parse_nci(graph_name='nci109.graph',
                               with_structural_features=True),
    }
Example #4
0
    f1_micro = f1_score(actuals, preds, average='micro')
    f1_macro = f1_score(actuals, preds, average='macro')
    accuracy = accuracy_score(actuals, preds)

    print 'form: name,n_hops,transform_name,micro_f,macro_f,accuracy'
    print '###RESULTS###: %s,%d,%s,%.8f,%.8f,%.8f' % (
        name, n_hops, transform_name, f1_micro, f1_macro, accuracy)


if __name__ == '__main__':
    np.random.seed()
    args = sys.argv[1:]

    if len(args) == 0:
        graph_experiment(lambda: data.parse_nci('nci1.graph'), 'cora', 2)
    else:
        name_to_data = {
            'nci1':
            lambda: data.parse_nci('nci1.graph'),
            #'nci1': lambda : data.parse_graph_data('nci1'),
            'nci109':
            lambda: data.parse_nci('nci109.graph'),
            #'mutag': lambda : data.parse_graph_data('mutag'),
            'mutag':
            lambda: data.parse_nci('mutag.graph'),
            'enzymes':
            lambda: data.parse_nci('enzymes.graph'),
            'ptc':
            lambda: data.parse_nci('ptc.graph'),
            'nci1struct':
Example #5
0
    actuals = Y[test_indices, :]

    accuracy = accuracy_score(actuals, preds)
    f1_micro = f1_score(actuals, preds, average="micro")
    f1_macro = f1_score(actuals, preds, average="macro")

    print "form: name,micro_f,macro_f,accuracy"
    print "###RESULTS###: %s,%s,%.8f,%.8f,%.8f" % (data_name, model_name, f1_micro, f1_macro, accuracy)


if __name__ == "__main__":
    np.random.seed()
    args = sys.argv[1:]

    name_to_data = {
        "nci1": lambda: data.parse_nci(graph_name="nci1.graph"),
        "nci109": lambda: data.parse_nci(graph_name="nci109.graph"),
        "nci1struct": lambda: data.parse_nci(graph_name="nci1.graph", with_structural_features=True),
        "nci109struct": lambda: data.parse_nci(graph_name="nci109.graph", with_structural_features=True),
    }

    name_to_parameters = {
        "nci1": {
            "num_dimensions": 2,
            "kernel_type": 1,
            "feature_type": 3,
            "ds_name": "nci1",
            "window_size": 2,
            "ngram_type": 0,
            "sampling_type": 1,
            "graphlet_size": 0,
Example #6
0
    actuals = np.argmax(Y[test_indices,:], axis=1)

    f1_micro = f1_score(actuals, preds, average='micro')
    f1_macro = f1_score(actuals, preds, average='macro')
    accuracy = accuracy_score(actuals, preds)

    print 'form: name,n_hops,transform_name,micro_f,macro_f,accuracy'
    print '###RESULTS###: %s,%d,%s,%.8f,%.8f,%.8f' % (name, n_hops, transform_name, f1_micro, f1_macro, accuracy)


if __name__ == '__main__':
    np.random.seed()
    args = sys.argv[1:]

    if len(args) == 0:
        graph_experiment(lambda : data.parse_nci('nci1.graph'), 'cora', 2)
    else:
        name_to_data = {
            'nci1': lambda : data.parse_nci('nci1.graph'),
            'nci109': lambda : data.parse_nci('nci109.graph'),
            'nci1struct': lambda: data.parse_nci(graph_name='nci1.graph', with_structural_features=True),
            'nci109struct': lambda: data.parse_nci(graph_name='nci109.graph', with_structural_features=True),
        }

        transform_lookup = {
            'id': None,
            'rwl': util.rw_laplacian,
            'l': util.laplacian,
        }

        name = args[0]