type=int, default=40, help='number of attack iterations') parser.add_argument('--resume', type=int, default=0) parser.add_argument('--save_model_loc', type=str, default=None) args = parser.parse_args() print(args) device = "cuda" set_seed(0) trainset, normalize, unnormalize = str2dataset(args.dataset, train=True) trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2) net = str2model(path=args.save_model_loc, dataset=args.dataset, pretrained=args.resume).eval().to(device) if args.attack == "frank": attacker = FrankWolfe(predict=lambda x: net(normalize(x)), loss_fn=nn.CrossEntropyLoss(reduction="sum"), eps=args.eps, kernel_size=5, nb_iter=args.nb_iter,
parser.add_argument('--save_info_loc', type=str_or_none, default=None) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--postprocess', type=str2bool, default=False) # parser.add_argument('--capacity_proj_mod', type=int, default=-1) args = parser.parse_args() print(args) device = "cuda" set_seed(args.seed) testset, normalize, unnormalize = str2dataset(args.dataset) testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=0) net = str2model(args.checkpoint, dataset=args.dataset, pretrained=True).eval().to(device) for param in net.parameters(): param.requires_grad = False projected_gradient = ProjectedGradient( predict=lambda x: net(normalize(x)), loss_fn=nn.CrossEntropyLoss(reduction="sum"), eps=args.eps,