def build_train_dataset(self): transform = transforms.Compose([ transforms.Resize(240), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ds = CatDogDataset(self.data_dir, train=True, transform=transform) return ds
mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] transform = transforms.Compose([ transforms.Resize(image_size), # transforms.Grayscale(), transforms.ToTensor(), transforms.Normalize(mean, std) ]) path = '/home/aims/Documents/Pytorch/pytorch_exercise/data' net = Classification() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) train_data = CatDogDataset(path + "/" + 'train', transform=transform) test_data = CatDogDataset(path + "/" + 'val', transform=transform) trainloader = torch.utils.data.DataLoader(test_data, batch_size=64, shuffle=True, num_workers=4) testloader = torch.utils.data.DataLoader(test_data, batch_size=64, shuffle=True, num_workers=4) #Training for epoch in range(10): # loop over the dataset multiple times running_loss = 0.0
def build_test_dataset(self): ds = CatDogDataset(self.data_dir, train=False, transform=self.test_transform) return ds