index_col=0) if w in [0, 1, 2, 3, 4, 5]: studentList = assessment1A.index elif w in [6, 7, 8, 9, 10, 11]: studentList = assessment2A.index temp = temp.loc[temp.index.isin(studentList)] # temp = graphLearning.mapNewLabel(temp, reLabelIndex) # temp = temp.drop(['Practice_0-Practice_0'],axis=1) # if w == 1: # temp = temp.drop([8]) transitionDataMatrixWeeks.append(temp) transitionDataMatrixWeeks_directFollow_standardised = [] for w in range(0, 12): transitionDataMatrixWeeks_directFollow_standardised.append( dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T)) transitionDataMatrixWeeks_directFollow_normalised = [] for w in range(0, 12): transitionDataMatrixWeeks_directFollow_normalised.append( dataProcessing.normaliseData(transitionDataMatrixWeeks[w], 'normalised')) #transpose transition data matrix for w in range(0, 12): transitionDataMatrixWeeks[w] = transitionDataMatrixWeeks[w].T transitionDataMatrixWeeks_directFollow_normalised[ w] = transitionDataMatrixWeeks_directFollow_normalised[w].T transitionDataMatrixWeeks_directFollow_standardised[ w] = transitionDataMatrixWeeks_directFollow_standardised[w].T
# a = activityDataMatrixWeeks[11] cmap = sns.cm.rocket_r sns.heatmap(a.corr(), annot=True, center=0.8, yticklabels=True, xticklabels=True, cmap='coolwarm') plt.title('Correlation matrix') plt.show() #transpose transition data matrix for w in range(0,12): transitionDataMatrixWeeks[w] = transitionDataMatrixWeeks[w].T transitionDataMatrixWeeks_directFollow_normalised = [] for w in range(0,12): transitionDataMatrixWeeks_directFollow_normalised.append(dataProcessing.normaliseData(transitionDataMatrixWeeks[w])) # correlation processing corrList = [] corrDistanceList = [] for w in range(0,12): corrTemp = transitionDataMatrixWeeks[w].corr() corrList.append(corrTemp) corrDistance = (0.5*(1 - corrTemp)).apply(np.sqrt) corrDistanceList.append(corrDistance) # cmap = sns.cm.rocket_r # sns.heatmap(corrList[3], annot=False, center=0.8, yticklabels=False, xticklabels=False, cmap='coolwarm') # plt.title('Correlation heatmap week ' + '3')
temp = temp.loc[temp.index.isin(studentList)] # temp = graphLearning.mapNewLabel(temp, reLabelIndex) # temp = temp.drop(['Practice_0-Practice_0'],axis=1) # if w == 1: # temp = temp.drop([8]) transitionDataMatrixWeeks.append(temp) for w in range(0,10): transitionDataMatrixWeeks[w].index = transitionDataMatrixWeeks[w].index + ['-2020'] for w in range(0,10): transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(transitionDataMatrixWeeks[w], reLabelIndex) transitionDataMatrixWeeks_directFollow_standardised = [] for w in range(0,10): transitionDataMatrixWeeks_directFollow_standardised.append(dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T)) transitionDataMatrixWeeks_directFollow_normalised = [] for w in range(0,10): transitionDataMatrixWeeks_directFollow_normalised.append(dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T, 'normalised')) # correlation processing corrList = [] corrDistanceList = [] for w in range(0,10): corrTemp = transitionDataMatrixWeeks_directFollow_standardised[w].corr() corrList.append(corrTemp) corrDistance = (0.5*(1 - corrTemp)).apply(np.sqrt) corrDistanceList.append(corrDistance) graph_all_weeks = []
sns.heatmap(corrDistanceList[3], annot=False, center=0, yticklabels=False, xticklabels=False, cmap='coolwarm') plt.title('Distance correlation heatmap week ' + '3') plt.show() #normalised data-------------------------------------------------------------- transitionDataMatrixWeeks_directFollow_normalised = [] for w in range(0, 12): temp = transitionDataMatrixWeeks_directFollow[w][:-1] transitionDataMatrixWeeks_directFollow_normalised.append( dataProcessing.normaliseData(temp)) #correlation processing corrList_dataNormalised = [] corrDistanceList_dataNormalised = [] for w in range(0, 12): corrTemp = transitionDataMatrixWeeks_directFollow_normalised[w].corr() corrList_dataNormalised.append(corrTemp) corrDistance = (0.5 * (1 - corrTemp)).apply(np.sqrt) corrDistanceList_dataNormalised.append(corrDistance) w = 11 matrix = corrList_dataNormalised[w] # denoised_matrix = libRMT.denoisedCorr(matrix, transitionDataMatrixWeeks_directFollow_normalised[w].shape[0], transitionDataMatrixWeeks_directFollow_normalised[w].shape[1])