import matplotlib.pyplot as plt import numpy as np from dataSetTool import DataSetTool from neuralNetwork.feedForwardNeuralNetwork import NeuralNetwork from neuralNetwork.structure.layer import Layer from numberGenerator.bounds import Bounds np.set_printoptions(suppress=True) dataSetTool = DataSetTool() training, generalization, testing = dataSetTool.getIrisDataSets( '../../dataSet/iris/iris.data') plt.grid(1) plt.xlabel('Iterations') plt.ylabel('Error') plt.ylim([0, 1]) plt.ion() l_rate = 0.5 bounds = Bounds(-2, 2) inputLayer = Layer(bounds, size=len(training[0][0]), prev=None, l_rate=l_rate, bias=True, label="Input layer") hiddenLayer = Layer(bounds,
import matplotlib.pyplot as plt import numpy as np from dataSetTool import DataSetTool from neuralNetwork.feedForwardNeuralNetwork import NeuralNetwork from neuralNetwork.structure.layer import Layer from numberGenerator.bounds import Bounds np.set_printoptions(suppress=True) dataSetTool = DataSetTool() training, testing, generalization = dataSetTool.getGlassDataSets( '../../dataSet/glass/glass.data') l_rate = 0.01 bounds = Bounds(-2, 2) inputLayer = Layer(bounds, size=len(training[0][0]), prev=None, l_rate=l_rate, bias=True, label="Input layer") hiddenLayer = Layer(bounds, size=12, prev=inputLayer, l_rate=l_rate, bias=True, label="Hidden layer") outputLayer = Layer(bounds,
import matplotlib.pyplot as plt import numpy as np from dataSetTool import DataSetTool from neuralNetwork.feedForwardNeuralNetwork import NeuralNetwork from neuralNetwork.structure.layer import Layer from numberGenerator.bounds import Bounds np.set_printoptions(suppress=True) dataSetTool = DataSetTool() training, generalization, testing = dataSetTool.getHeartDataSets( '../../dataSet/heart/processed.cleveland.data') plt.xlabel('Iterations') plt.ylabel('Error') plt.ion() l_rate = 0.1 bounds = Bounds(-2, 2) inputLayer = Layer(bounds, size=len(training[0][0]), prev=None, l_rate=l_rate, bias=True, label="Input layer") hiddenLayer = Layer(bounds, size=6, prev=inputLayer,
input = np.array([[0, 0], [1, 0], [0, 1], [1, 1]]) target = np.array([[0], [1], [1], [0]]) training = [] for x, y in zip(input, target): training.append((x, y)) # Get data set dataSetTool = DataSetTool() psonn.training, psonn.testing = training, training psonn.bounds = Bounds(-5, 5) # Create neural network l_rate = None inputLayer = Layer(psonn.bounds, size = 2, prev = None, l_rate = l_rate, bias = True, label = "Input layer") hiddenLayer = Layer(psonn.bounds, size = 4, prev = inputLayer, l_rate = l_rate, bias = True, label = "Hidden layer") outputLayer = Layer(psonn.bounds, size = 1, prev = hiddenLayer, l_rate = l_rate, bias = False, label = "Output layer") psonn.nn = NeuralNetwork() psonn.nn.appendLayer(inputLayer) psonn.nn.appendLayer(hiddenLayer) psonn.nn.appendLayer(outputLayer) # Create the pso with the nn weights
import matplotlib.pyplot as plt import numpy as np from dataSetTool import DataSetTool from neuralNetwork.feedForwardNeuralNetwork import NeuralNetwork from neuralNetwork.structure.layer import Layer from numberGenerator.bounds import Bounds np.set_printoptions(suppress=True) dataSetTool = DataSetTool() fileName = '../../dataSet/pima-indians-diabetes/pima-indians-diabetes.data' training, generalization, testing = dataSetTool.getPrimaIndiansDiabetesSets(fileName) plt.xlabel('Iterations') plt.ylabel('Error') plt.ion() l_rate = 0.1 bounds = Bounds(-1, 1) inputLayer = Layer(bounds, size = len(training[0][0]), prev = None, l_rate = l_rate, bias = True, label = "Input layer") hiddenLayer = Layer(bounds, size = 20, prev = inputLayer, l_rate = l_rate, bias = True, label = "Hidden layer") outputLayer = Layer(bounds, size = len(training[0][1]), prev = hiddenLayer, l_rate = l_rate, bias = False, label = "Output layer") fnn = NeuralNetwork() fnn.appendLayer(inputLayer) fnn.appendLayer(hiddenLayer) fnn.appendLayer(outputLayer)