# _files = glob(src+'_train/batch_100_*.p') # _files.sort() # _files = _files[:10] rng.shuffle(_files) class files: data_files = _files n_train = int(len(data_files) * .8) n_valid = int(len(data_files) * .2) train = data_files[:n_train] valid = data_files[n_train:n_train+n_valid] if use.valid2: valid2 = data_files[n_train+n_valid:] # valid2 = glob(src+'_valid/batch_100_*.p') # data augmentation if use.aug: remove_aug() # remove data augmentation of previous session if any start_transform_loop() # start augmentation loop transform(files.train[-1]) # transform last file # print data sizes if use.valid2: files.n_test = len(files.valid2) else: files.n_test = 0 write('data: total: %i train: %i valid: %i test: %i' % \ ((files.n_test+files.n_train+files.n_valid)*batch_size, files.n_train*batch_size, files.n_valid*batch_size, files.n_test*batch_size)) def load_data(path, trans): global rng, x_,t_,y_ """ load data into shared variables """
rng.shuffle(_files) class files: data_files = _files n_train = int(len(data_files) * .8) n_valid = int(len(data_files) * .2) train = data_files[:n_train] valid = data_files[n_train:n_train + n_valid] if use.valid2: valid2 = data_files[n_train + n_valid:] # valid2 = glob(src+'_valid/batch_100_*.p') # data augmentation if use.aug: remove_aug() # remove data augmentation of previous session if any start_transform_loop() # start augmentation loop transform(files.train[-1]) # transform last file # print data sizes if use.valid2: files.n_test = len(files.valid2) else: files.n_test = 0 write('data: total: %i train: %i valid: %i test: %i' % \ ((files.n_test+files.n_train+files.n_valid)*batch_size, files.n_train*batch_size, files.n_valid*batch_size, files.n_test*batch_size)) def load_data(path, trans): global rng, x_, t_, y_