def get_transition_map(trajs,
                       padded_map,
                       w,
                       h,
                       diagonal=False,
                       conditional=True):
    mcm = Grid_HMM(np.array(padded_map.shape).astype(int))
    for idx, trajectory in enumerate(trajs):
        if idx % 100 == 0:
            print("Add transitions of {}/{} trajectory to the mcm.".format(
                idx + 1, len(trajs)))
        for t in range(trajectory.shape[0] - 2):
            from_ = trajectory[t, :]
            current = trajectory[t + 1, :]
            to = trajectory[t + 2, :]
            mcm.add_transition(from_, current, to)

    transition_probs = mcm.get_transition_probs(conditional, diagonal)
    return transition_probs[w // 2:w + w // 2, h // 2:h + h // 2]
Example #2
0
    def reshape_probs(self, nn_probs, condi_prob, config):
        """
        Reshape probs to (width, height, 3, 3, 3, 3).
        """
        desired_shape = (self.width, self.height, 3, 3, 3, 3)
        if nn_probs.shape == desired_shape:
            return nn_probs

        if condi_prob:
            # if shape is (n_channels, width, height)
            if nn_probs.ndim == 3:
                nn_probs = np.transpose(nn_probs, axes=(1, 2, 0))
                shape = (self.width, self.height, self.num_directions,
                         self.num_directions)
                nn_probs = nn_probs.reshape(*shape)

            # otherwise, shape is (width, height, num_directions, num_directions)
            velocities = config.velocities

            v_idxs = [Grid_HMM.two_d_vel_to_idx(vel) for vel in velocities]
            probs = np.zeros((self.width, self.height, 3, 3, 3, 3))
            for i in range(self.num_directions):
                for j in range(self.num_directions):
                    probs[:, :, v_idxs[i][0], v_idxs[i][1], v_idxs[j][0],
                          v_idxs[j][1]] = nn_probs[:, :, i, j]
        else:
            vel_idxs = config.unique_vel_idxs
            vel_idxs_b = config.unique_vel_idxs_backward
            num_vel = len(vel_idxs)
            if nn_probs.shape == (num_vel, self.width, self.height):
                nn_probs = np.transpose(nn_probs, axes=(1, 2, 0))
            probs = np.zeros((self.width, self.height, 3, 3, 3, 3))
            for i in range(num_vel):
                # multiply with 0.5 since each entry is the sum
                # of prob of that vel and its backward
                vel_idx, vel_idx_b = vel_idxs[i], vel_idxs_b[i]
                probs[:, :, vel_idx[0], vel_idx[1], vel_idx[2],
                      vel_idx[3]] = 0.5 * nn_probs[:, :, i]
                probs[:, :, vel_idx_b[0], vel_idx_b[1], vel_idx_b[2],
                      vel_idx_b[3]] = 0.5 * nn_probs[:, :, i]
        return probs
Example #3
0
    def blur_probs_spatially(self, nn_probs, blur_extent=9, var=1.2):

        idxs = map(lambda vel: Grid_HMM.two_d_vel_to_idx(vel),
                   self.config.velocities)
        turns = []
        for idx_xy in np.ndindex(self.map.shape):
            for idx_vel_last in idxs:
                max_idx = np.argmax(nn_probs[idx_xy + idx_vel_last])
                max_idx = np.unravel_index(max_idx, (3, 3))
                if not max_idx == idx_vel_last:
                    turns.append(idx_xy + idx_vel_last)
        print("found")

        w, h = nn_probs.shape[:2]
        half_be = blur_extent // 2

        blurred = nn_probs.copy()
        blurred = np.pad(blurred, ((half_be, half_be), (half_be, half_be),
                                   (0, 0), (0, 0), (0, 0), (0, 0)),
                         mode='constant',
                         constant_values=0)

        gaussian = nd_gaussian((blur_extent, blur_extent), (half_be, half_be),
                               var)

        for turn in turns:
            temp = gaussian[..., None, None] * nn_probs[turn]
            x, y = turn[0], turn[1]
            vel_x, vel_y = turn[2], turn[3]
            blurred[x:x + blur_extent, y:y + blur_extent, vel_x, vel_y] += temp
        blurred = blurred[half_be:half_be + w, half_be:half_be + h]

        # normalize
        with np.errstate(divide='ignore', invalid='ignore'):
            blurred /= blurred.sum(axis=(4, 5), keepdims=True)
            blurred[~np.isfinite(blurred)] = 0

        return blurred
Example #4
0
trajectory_resampling_factor = 5 # average number of trajectories per pixel
min_traj_length =  6# in meters
max_traj_length = 20  # in meters
diagonal_str = '' if not diagonal else 'diagonal'
num_directions = 4 if not diagonal else 8
algo_str = 'astar_cost_' + diagonal_str+trajectory_sampling_mode + '_' + \
           str(min_traj_length) + '_' + \
           str(max_traj_length) + '_' + \
           str(trajectory_resampling_factor)
if diagonal:
    velocities = [[0, 1], [1, 0], [0, -1], [-1, 0],
                  [1, 1], [1, -1], [-1, 1], [-1, -1]]
else:
    velocities = [[0, 1], [1, 0], [0, -1], [-1, 0]]
unique_vels, unique_vel_idxs,\
    unique_vels_backward, unique_vel_idxs_backward = Grid_HMM.get_unique_vel_idxs(velocities)


# NETWORK
nn_input_size = 32
nn_output_size = 32
nn_io_resampling_factor = 10

# TRAINING
training_data_path = data_folder+'/io_for_training/'+algo_str
seed = 0
learning_rate = 0.000151125753584
lr_sched_decay = 0.998524022851
num_epochs = 100
# target_lr_rate = 1e-6
# lr_sched_decay = (target_lr_rate / learning_rate) ** (1.0 / num_epochs) # Applied each