Example #1
0
def generate_chinese_images_to_check(obj_size=CHAR_IMG_SIZE,
                                     augmentation=False):
    print("Get font_file_list ...")
    font_file_list = [
        os.path.join(FONT_FILE_DIR, font_name)
        for font_name in os.listdir(FONT_FILE_DIR)
        if font_name.lower()[-4:] in (".otf", ".ttf", ".ttc", ".fon")
    ]
    # font_file_list = [os.path.join(FONT_FINISHED_DIR, "chinese_fonts_暂时移出/康熙字典体完整版本.otf")]

    chinese_char_num = len(CHAR2ID_DICT)
    total_num = len(font_file_list) * chinese_char_num
    count = 0
    for font_file in font_file_list:  # 外层循环是字体
        font_name = os.path.basename(font_file)
        font_type = font_name.split(".")[0]

        # 创建保存该字体图片的目录
        font_img_dir = os.path.join(CHAR_IMGS_DIR, font_type)
        remove_then_makedirs(font_img_dir)

        for chinese_char, bigger_PIL_img in generate_all_chinese_images_bigger(
                font_file, image_size=int(obj_size * 1.2)):  # 内层循环是字
            # 检查生成的灰度图像是否可用,黑底白字
            image_data = list(bigger_PIL_img.getdata())
            if sum(image_data) < 10:
                continue

            if not augmentation:
                PIL_img = get_standard_image(bigger_PIL_img,
                                             obj_size,
                                             reverse_color=True)
            else:
                PIL_img = get_augmented_image(bigger_PIL_img,
                                              obj_size,
                                              rotation=True,
                                              dilate=False,
                                              erode=True,
                                              reverse_color=True)

            # 保存生成的字体图片
            image_name = chinese_char + ".jpg"
            save_path = os.path.join(font_img_dir, image_name)
            PIL_img.save(save_path, format="jpeg")

            # 当前进度
            count += 1
            if count % 200 == 0:
                print("Progress bar: %.2f%%" % (count * 100 / total_num))
                sys.stdout.flush()
    return
Example #2
0
def convert_chinese_images_to_check(obj_size=CHAR_IMG_SIZE, augmentation=True):
    print("Get total images num ...")
    font_images_num_list = [
        len(os.listdir(os.path.join(EXTERNEL_IMAGES_DIR, content)))
        for content in os.listdir(EXTERNEL_IMAGES_DIR)
        if os.path.isdir(os.path.join(EXTERNEL_IMAGES_DIR, content))
    ]

    print("Begin to convert images ...")
    total_num = sum(font_images_num_list)
    count = 0
    for font_type, image_paths_list in get_external_image_paths(
            root_dir=EXTERNEL_IMAGES_DIR):
        # 创建保存该字体图片的目录
        font_img_dir = os.path.join(CHAR_IMGS_DIR, font_type)
        remove_then_makedirs(font_img_dir)

        for image_path in image_paths_list:
            # 加载外部图片,将图片调整为正方形
            # 为了保证图片旋转时不丢失信息,生成的图片比本来的图片稍微bigger
            # 为了方便图片的后续处理,图片必须加载为黑底白字,可以用reverse_color来调整
            try:
                bigger_PIL_img = load_external_image_bigger(
                    image_path, white_background=True, reverse_color=True)
            except OSError:
                print("The image %s result in OSError !" % image_path)
                continue

            if not augmentation:
                PIL_img = get_standard_image(bigger_PIL_img,
                                             obj_size,
                                             reverse_color=True)
            else:
                PIL_img = get_augmented_image(bigger_PIL_img,
                                              obj_size,
                                              rotation=True,
                                              dilate=False,
                                              erode=True,
                                              reverse_color=True)

            # 保存生成的字体图片
            image_name = os.path.basename(image_path).split(".")[0] + ".jpg"
            save_path = os.path.join(font_img_dir, image_name)
            PIL_img.save(save_path, format="jpeg")

            # 当前进度
            count += 1
            if count % 200 == 0:
                print("Progress bar: %.2f%%" % (count * 100 / total_num))
                sys.stdout.flush()
Example #3
0
def generate_chinese_images(obj_size=CHAR_IMG_SIZE,
                            num_imgs_per_font=NUM_IMAGES_PER_FONT):
    print("Get font_file_list ...")
    font_file_list = [
        os.path.join(FONT_FILE_DIR, font_name)
        for font_name in os.listdir(FONT_FILE_DIR)
        if font_name.lower()[-4:] in (".otf", ".ttf", ".ttc", ".fon")
    ]

    print("Begin to generate images ...")
    chinese_char_num = len(CHAR2ID_DICT)
    total_num = len(font_file_list) * chinese_char_num
    count = 0
    for font_file in font_file_list:  # 外层循环是字体
        font_name = os.path.basename(font_file)
        font_type = font_name.split(".")[0]

        # 创建保存该字体图片的目录
        save_dir = os.path.join(CHAR_IMGS_DIR, font_type)
        remove_then_makedirs(save_dir)

        for chinese_char, bigger_PIL_img in generate_all_chinese_images_bigger(
                font_file, image_size=int(obj_size * 1.2)):  # 内层循环是字
            # 检查生成的灰度图像是否可用,黑底白字
            image_data = list(bigger_PIL_img.getdata())
            if sum(image_data) < 10:
                continue

            PIL_img_list = \
                [get_augmented_image(bigger_PIL_img, obj_size, rotation=True, dilate=False, erode=True, reverse_color=True)
                 for i in range(num_imgs_per_font)]

            # 保存生成的字体图片
            for index, PIL_img in enumerate(PIL_img_list):
                image_name = chinese_char + "_" + str(index) + ".jpg"
                save_path = os.path.join(save_dir, image_name)
                PIL_img.save(save_path, format="jpeg")

            # 当前进度
            count += 1
            if count % 200 == 0:
                print("Progress bar: %.2f%%" % (count * 100 / total_num))
                sys.stdout.flush()
Example #4
0
def convert_tfrecords(obj_size=CHAR_IMG_SIZE,
                      num_imgs_per_font=NUM_IMAGES_PER_FONT):
    print("Get total images num ...")
    font_images_num_list = [
        len(os.listdir(os.path.join(EXTERNEL_IMAGES_DIR, content)))
        for content in os.listdir(EXTERNEL_IMAGES_DIR)
        if os.path.isdir(os.path.join(EXTERNEL_IMAGES_DIR, content))
    ]

    # 创建保存tfrecords文件的目录
    check_or_makedirs(CHAR_TFRECORDS_DIR)

    # 可以把变换的图片直接存入tfrecords文件
    # 不必将变换的图片先保存到磁盘,再从磁盘读取出来保存到tfrecords文件,这样效率太低
    # 通常是用一种字体的一个字图片增强出很多个图片,这些图片最好是分开存放
    # 若直接把同一字体同一个字图片增强出的多张图片连续放到同一个tfrecords里,那么每一个训练batch的多样性就不好
    writers_list = \
        [tf.io.TFRecordWriter(os.path.join(CHAR_TFRECORDS_DIR, "chinese_imgs_%d_from_img.tfrecords" % i))
         for i in range(20)]

    print("Begin to convert images ...")
    total_num = sum(font_images_num_list)
    count = 0
    for font_type, image_paths_list in get_external_image_paths(
            root_dir=EXTERNEL_IMAGES_DIR):

        for image_path in image_paths_list:
            chinese_char = os.path.basename(image_path)[0]

            # 加载外部图片,将图片调整为正方形
            # 为了保证图片旋转时不丢失信息,生成的图片比本来的图片稍微bigger
            # 为了方便图片的后续处理,图片必须加载为黑底白字,可以用reverse_color来调整
            try:
                bigger_PIL_img = load_external_image_bigger(
                    image_path, white_background=True, reverse_color=True)
            except OSError:
                print("The image %s result in OSError !" % image_path)
                continue

            PIL_img_list = \
                [get_augmented_image(bigger_PIL_img, obj_size, rotation=True, dilate=False, erode=True, reverse_color=True)
                 for i in range(num_imgs_per_font)]

            # 保存生成的字体图片
            for index, PIL_img in enumerate(PIL_img_list):
                # train_set和test_set的比例约为 5:1
                writer = random.choice(writers_list)

                bytes_image = PIL_img.tobytes()  # 将图片转化为原生bytes
                bytes_char = chinese_char.encode('utf-8')
                example = tf.train.Example(features=tf.train.Features(
                    feature={
                        'bytes_image':
                        tf.train.Feature(bytes_list=tf.train.BytesList(
                            value=[bytes_image])),
                        'bytes_char':
                        tf.train.Feature(bytes_list=tf.train.BytesList(
                            value=[bytes_char])),
                    }))
                writer.write(example.SerializeToString())

            # 当前进度
            count += 1
            if count % 200 == 0:
                print("Progress bar: %.2f%%" % (count * 100 / total_num))
                sys.stdout.flush()

    # 关闭所有的 tfrecords writer
    [writer.close() for writer in writers_list]
Example #5
0
def generate_tfrecords(obj_size=CHAR_IMG_SIZE,
                       num_imgs_per_font=NUM_IMAGES_PER_FONT):
    print("Get font_file_list ...")
    font_file_list = [
        os.path.join(FONT_FILE_DIR, font_name)
        for font_name in os.listdir(FONT_FILE_DIR)
        if font_name.lower()[-4:] in (".otf", ".ttf", ".ttc", ".fon")
    ]

    # 创建保存tfrecords文件的目录
    check_or_makedirs(CHAR_TFRECORDS_DIR)

    # 可以把生成的图片直接存入tfrecords文件
    # 不必将生成的图片先保存到磁盘,再从磁盘读取出来保存到tfrecords文件,这样效率太低
    # 通常是用某种字体对一个字生成很多个增强的图片,这些图片最好是分开存放
    # 若直接把同一字体同一个字的多张图片连续放到同一个tfrecords里,那么训练batch的多样性不好
    writers_list = \
        [tf.io.TFRecordWriter(os.path.join(CHAR_TFRECORDS_DIR, "chinese_imgs_%d_from_font.tfrecords" % i))
         for i in range(20)]

    print("Begin to generate images ...")
    chinese_char_num = len(CHAR2ID_DICT)
    total_num = len(font_file_list) * chinese_char_num
    count = 0
    for font_file in font_file_list:  # 外层循环是字体

        for chinese_char, bigger_PIL_img in generate_all_chinese_images_bigger(
                font_file, image_size=int(obj_size * 1.2)):  # 内层循环是字
            # 检查生成的灰度图像是否可用,黑底白字
            image_data = list(bigger_PIL_img.getdata())
            if sum(image_data) < 10:
                continue

            PIL_img_list = \
                [get_augmented_image(bigger_PIL_img, obj_size, rotation=True, dilate=False, erode=True, reverse_color=True)
                 for i in range(num_imgs_per_font)]

            # 保存生成的字体图片
            for PIL_img in PIL_img_list:
                writer = random.choice(writers_list)

                bytes_image = PIL_img.tobytes()  # 将图片转化为原生bytes
                bytes_char = chinese_char.encode('utf-8')
                example = tf.train.Example(features=tf.train.Features(
                    feature={
                        'bytes_image':
                        tf.train.Feature(bytes_list=tf.train.BytesList(
                            value=[bytes_image])),
                        'img_height':
                        tf.train.Feature(int64_list=tf.train.Int64List(
                            value=[PIL_img.height])),
                        'img_width':
                        tf.train.Feature(int64_list=tf.train.Int64List(
                            value=[PIL_img.width])),
                        'bytes_char':
                        tf.train.Feature(bytes_list=tf.train.BytesList(
                            value=[bytes_char]))
                    }))
                writer.write(example.SerializeToString())

            # 当前进度
            count += 1
            if count % 200 == 0:
                print("Progress bar: %.2f%%" % (count * 100 / total_num))
                sys.stdout.flush()

    # 关闭所有的tfrecords写者
    [writer.close() for writer in writers_list]