def check_sanity(self):
     for i in tqdm(self.image_ids):
         assert self.image_files[i][:-4] == self.label_files[i][:-4],\
             'image - label filename mismatch: {} - {}'.format(self.image_files[i], self.label_files[i])
         img = load_image_rgb(
             os.path.join(self.image_dir, self.image_files[i]))
         msk = load_image_rgb(
             os.path.join(self.label_dir, self.label_files[i]))
         assert img.shape == msk.shape,\
             'img.shape: {}, msk.shape: {}'.format(img.shape, msk.shape)
    def display(self):
        should_update = super(GuiInferenceViewer, self).display()
        if should_update:
            image_file = self.image_files[self.image_id]
            print('Processing {}...'.format(os.path.basename(image_file)))
            img = load_image_rgb(image_file)
            t = time.time()
            det = self.model.predict(img.astype(np.float32), self.threshold)
            time_taken = time.time() - t
            print("\ttime taken: {}".format(time_taken))

            if self.model.config.MODEL == 'maskrcnn':
                display_instances(image=img,
                                  boxes=det['rois'],
                                  masks=det['masks'],
                                  class_ids=det['class_ids'],
                                  scores=det['scores'],
                                  title=image_file,
                                  class_names=self.class_names,
                                  ax=self.ax)
            else:
                display_segmentation(image=img,
                                     masks=det,
                                     class_names=self.class_names,
                                     ax=self.ax)

            title = "ID: {}\nImage file name: {}".format(
                self.image_id, os.path.basename(image_file))
            self.fig.suptitle(title, fontsize=20)
            self.fig.canvas.draw_idle()
    def display(self):
        should_update = super(GuiImageViewer, self).display()
        if should_update:
            image_file = self.image_files[self.image_id]
            print('Processing {}...'.format(os.path.basename(image_file)))
            img = load_image_rgb(image_file)
            self.ax.imshow(img.astype(np.uint8))

            title = "ID: {}\nImage file name: {}".format(
                self.image_id, os.path.basename(image_file))
            self.fig.suptitle(title, fontsize=20)
            self.fig.canvas.draw_idle()
 def load_mask(self, image_id):
     rgb_mask = load_image_rgb(
         os.path.join(self.label_dir, self.label_files[image_id]))
     mask = np.zeros(
         (rgb_mask.shape[0], rgb_mask.shape[1], self.num_classes - 1))
     for cls in range(self.num_classes - 1):
         colors = self.trainId2colors[cls]
         cls_mask = np.zeros((rgb_mask.shape[0], rgb_mask.shape[1]))
         for color in colors:
             cls_mask = np.logical_or(cls_mask,
                                      (rgb_mask == color).all(axis=2))
         mask[:, :, cls] = cls_mask
     return mask
Example #5
0
        model.load_weights(args.weights)

    image_files = sorted([
        os.path.join(args.image_dir, x) for x in os.listdir(args.image_dir)
        if x.lower().endswith('.jpg') or x.lower().endswith('.png')
        or x.lower().endswith('.bmp')
    ])

    dst_dir = os.path.join(args.image_dir, 'results')
    if not os.path.exists(dst_dir):
        os.mkdir(dst_dir)

    for image_file in image_files:
        filename = os.path.basename(image_file)
        print('Processing {}...'.format(filename))
        img = load_image_rgb(image_file)
        t = time.time()
        det = model.predict(img.astype(np.float32), args.threshold)
        time_taken = time.time() - t
        print("\ttime taken: {}".format(time_taken))

        if model.config.MODEL == 'maskrcnn':
            res = draw_instances(image=img,
                                 boxes=det['rois'],
                                 masks=det['masks'],
                                 class_ids=det['class_ids'],
                                 scores=det['scores'],
                                 title=image_file,
                                 class_names=label)
        else:
            res = draw_segmentation(image=img, masks=det, class_names=label)
 def load_image(self, image_id):
     return load_image_rgb(
         os.path.join(self.image_dir, self.image_files[image_id]))
 def load_image(self, image_id):
     return load_image_rgb(self.annotations[image_id]['path'])
Example #8
0
    def load_image(self, image_id):
        image = load_image_rgb(self.image_info[image_id]['path'])

        return image