Example #1
0
def plot3(alphabet_sizes,
          data_size=400,
          missingness_parameter=0.1,
          dl="me",
          minsup=0.02):
    similarity_list = []

    for alphabet_size in alphabet_sizes:
        positives = []
        negatives = []
        while len(positives) == 0 or len(negatives) == 0:
            actual_theory = generate_theory(alphabet_size)
            theory_object = GeneratedTheory(actual_theory)
            generator = TheoryNoisyGeneratorOnDataset(theory_object, data_size,
                                                      missingness_parameter)
            positives, negatives = generator.generate_dataset()

        learned_theory, _ = Mistle(positives, negatives).learn(dl_measure=dl,
                                                               minsup=minsup)
        learned_clauses = get_clauses(learned_theory)

        similarity = compare_theories(actual_theory, learned_clauses,
                                      alphabet_size)
        similarity_list.append(similarity)

    # print(similarity_list)
    return similarity_list
Example #2
0
def plot1(data_sizes,
          alphabet_size=14,
          missingness_parameter=0.1,
          dl="me",
          minsup=0.02):
    similarity_list = []
    for data_size in data_sizes:
        positives = []
        negatives = []
        while len(positives) == 0 or len(negatives) == 0:
            actual_theory = []
            while actual_theory == []:
                actual_theory = generate_complex_theory(
                    alphabet_size, clause_size=(2, alphabet_size))
                if solve([tuple(clause)
                          for clause in actual_theory]) == "UNSAT":
                    print("Generated theory is not SAT\t: " +
                          str(actual_theory))
                    actual_theory = []
            theory_object = GeneratedTheory(actual_theory)
            generator = TheoryNoisyGeneratorOnDataset(theory_object, data_size,
                                                      missingness_parameter)
            positives, negatives = generator.generate_dataset()

        learned_theory, _ = Mistle(positives, negatives).learn(dl_measure=dl,
                                                               minsup=minsup)
        learned_clauses = get_clauses(learned_theory)

        similarity = compare_theories(actual_theory, learned_clauses,
                                      alphabet_size)
        similarity_list.append(similarity)

    return similarity_list
Example #3
0
samp_positives_list = []
samp_negatives_list = []
samp_unique_positives_list = []
samp_unique_negatives_list = []
overlap_size_list = []

# simple_theory_list = []
# for i in range(iterations):
#     simple_theory_list.append(generate_theory(alphabet_size))

for i in range(iterations):
    print("\n\n==================== New Iteration [" + str(i) +
          "] ====================")
    actual_theory = complex_theory_list[i]
    # actual_theory = simple_theory_list.pop()
    theory_object = GeneratedTheory(actual_theory)
    generator = TheoryNoisyGeneratorOnDataset(theory_object, data_size,
                                              missingness_parameter)
    positives, negatives = generator.generate_dataset()

    samp_positives = len(positives)
    samp_negatives = len(negatives)
    samp_unique_positives = len(set(positives))
    samp_unique_negatives = len(set(negatives))

    if samp_positives == 0:
        print(i, "Sampled Positives are empty")
    if samp_negatives == 0:
        print(i, "Sampled Negatives are empty")

    if balance: