Example #1
0
 def open_and_display_data(self):
     data, label = dh.open_data()
     self.data.append(data, label)
     num_new_lines_to_add = data.shape[1]
     for i in range(1, num_new_lines_to_add + 1):
         if self.display_type == 'decimated':
             self.data_area.plot(self.data.decimated_data[-i],
                                 data.keys()[-i] + " " + label,
                                 color=COLORS[self.color_index])
         elif self.display_type == 'heavy':
             self.data_area.plot(self.data.heavy_decimate_data[-i],
                                 data.keys()[-i] + " " + label,
                                 color=COLORS[self.color_index])
         self.make_data_summary_frame(self.data, -i,
                                      data.keys()[-i] + " " + label)
         self.color_index = (self.color_index + 1) % 9
Example #2
0
import data_handler as data
from MLP import MLP


def read_file():
    iris = load_iris()
    return iris.data, iris.target


batch_size = 2
num_epochs = 1000
number_final_att = 13

if __name__ == '__main__':
    ############################################## 2d
    inputs, labels = data.open_data('wine.arff', 3)
    inputs = np.array(inputs)
    labels = np.array(labels)

    pca = Pca()
    data = preprocessing.scale(inputs)

    pcaAdapt = PcaAdapt(13)
    pcaAdapt.train(data)

    result = np.matrix.transpose(pcaAdapt.pca_result(data)).reshape(
        len(data), number_final_att)

    mlp = MLP(3)

    points = result
Example #3
0
import numpy as np
from TCN import TCN
import data_handler as data
import os

if __name__ == '__main__':
    num_epochs = 1000
    n_classes = 20
    batch_size = 20
    num_features = 19
    timesteps = 150
    max_len = 150
    lean_rate = 0.001
    os.environ['CUDA_VISIBLE_DEVICES'] = str(1)
    inputs, labels = data.open_data(max_len=max_len)
    inputs, labels = np.array(inputs), np.array(labels)
    model = TCN(n_classes)
    inputs = np.reshape(inputs, (-1, timesteps, num_features))
    shape = inputs.shape[1:]
    model.create_tcn(shape)
    model.compile(lean_rate)
    model.fit(inputs, labels, num_epochs, batch_size)
Example #4
0
from Mlp import Mlp
from Rbf import Rbf
import data_handler as data
import numpy as np

if __name__ == '__main__':
    num_classes = 3
    num_features = 7
    num_layers = 3
    layer_size = 128
    num_epochs = 4000
    learn_rate = 0.01
    batch_size = 21
    momentum = 0.8
    folds = 10
    inputs, labels = data.open_data('seeds_dataset.txt', num_classes)

    inputs = np.concatenate((inputs, inputs))
    labels = np.concatenate((labels, labels))
    accuracy = {}
    train_folds = (folds - 1) / folds
    test_folds = 1 / folds

    # cross-fold-validation
    for fold in range(folds):
        step = fold * int(test_folds * len(inputs) / 2)
        train_set_len_step = int(train_folds * len(inputs) / 2) + step
        test_set_len = int(test_folds * len(inputs) / 2)

        train_inputs = inputs[step:train_set_len_step]
        train_labels = labels[step:train_set_len_step]