import csv import numpy as np import pandas as pd from data_loader import load_file from scipy.io import savemat import glob for idx in range(15, 16): fname = glob.glob(f"data/19_04_2021/*_{idx}.bin*")[0] table, range_res, vel_res = load_file(fname) table = np.average(table, 1) table = table.reshape((table.shape[0], table.shape[1])) # pd.DataFrame(table).to_csv(fname.replace(".bin", ".csv")) savemat(fname.replace(".bin", ".mat"), {"radar": table})
# Set plot params plt.rc('font', size=14) # controls default text sizes plt.rc('axes', titlesize=14) # fontsize of the axes title plt.rc('axes', labelsize=16) # fontsize of the x and y labels plt.rc('xtick', labelsize=14) # fontsize of the tick labels plt.rc('ytick', labelsize=14) # fontsize of the tick labels plt.rc('legend', fontsize=14) # legend fontsize # Specify files to load ag_file = 'Ag_200nm_10pt' au_file = 'Au_200nm_10pt' pd_file = 'Pd_200nm_10pt' lamp_file = 'CRS_700nm' # Load lamp spectra lamp_data, _ = load_file(lamp_file) lamp_spectra = lamp_data["spectra_0"] # Define dict spectra_dict = { "Ag": { "file": ag_file, "wvl": [], "avg_spectra": np.zeros((1024)), "peak_pos": 0, "color": "slategray" }, "Au": { "file": au_file, "wvl": [], "avg_spectra": np.zeros((1024)),
# Set plot params plt.rcParams["font.family"] = "Times New Roman" plt.rc('font', size=14) # controls default text sizes plt.rc('axes', titlesize=14) # fontsize of the axes title plt.rc('axes', labelsize=16) # fontsize of the x and y labels plt.rc('xtick', labelsize=14) # fontsize of the tick labels plt.rc('ytick', labelsize=14) # fontsize of the tick labels plt.rc('legend', fontsize=14) # legend fontsize # Load the data filename = 'Ag_200nm_10pt' lamp_spectrum_file = 'CRS_700nm' background_spectra = 0 # Size of sensor is 1024x256 data, nbr_particles = load_file(filename) lamp_data, s = load_file(lamp_spectrum_file) # Plot the data fig, ax = plt.subplots(figsize=(10,6)) ax = fig.gca(projection='3d') wvl = data["lambda"] background = data["spectra_" + str(background_spectra)] lamp_spectra = lamp_data["spectra_0"] peak_guesses = [540+i*20 for i in range(nbr_particles)] #peak_guesses.reverse() peak_positions = [] for i in range(0,nbr_particles): spectra = data[f'spectra_{i}'] if not i == background_spectra:
plt.rc('font', size=14) # controls default text sizes plt.rc('axes', titlesize=14) # fontsize of the axes title plt.rc('axes', labelsize=14) # fontsize of the x and y labels plt.rc('xtick', labelsize=14) # fontsize of the tick labels plt.rc('ytick', labelsize=14) # fontsize of the tick labels plt.rc('legend', fontsize=14) # legend fontsize # Files filename = 'Pd_diskrod_200nm_15pt_pulse2' lamp_file = 'CRS_700nm_glas' gas_file = 'Lab_TIF295_ArH2_pulses_Pd_2' nbr_particles = 15 samples_to_plot = [12, 14] # Load lamp spectra lamp_data, _ = load_file(lamp_file) lamp_spectra = lamp_data["spectra_0"] # Load gas data - ndarray [t,h2] gas_data = read_gas_file(gas_file) #fig_gas, ax_gas = plt.subplots() #ax_gas.plot(gas_data[0], gas_data[1]) # Load data measurements = read_timeseries(filename, nbr_particles) #print(measurements) peak_guess = 750 # About 750 nm is a good guess for Pd # Loop over all measurements at different times t peak_positions = [[] for i in range(nbr_particles)]
from data_loader import load_file from k_means import Kmeans from dbscan import DBSCAN from random import shuffle from utils import calculate_accuracy from sklearn.cluster import KMeans from utils import euclidean_distance import pry raw_data = load_file('iris.data') classes = set([x[-1] for x in raw_data]) class_dict = {} test_data = {} train_data = [] for kelas in classes: class_dict[kelas] = list(filter(lambda x: x[-1] == kelas, raw_data)) shuffle(class_dict[kelas]) test_data[kelas] = [x[:-1] for x in class_dict[kelas][:10]] train_data += [x[:-1] for x in class_dict[kelas][10:]] db_scan = DBSCAN(1, 0.5) pry() db_scan.fit(train_data[:10]) db_scan.clusters
n_slice = len(glob.glob('{0}/rawdata*.mat'.format(subject_id))) output = [] target = [] input0 = [] normalization = [] for i in range(1, n_slice + 1): raw = '{0}/rawdata{1}.mat'.format(subject_id, i) sen = '{0}/espirit{1}.mat'.format(subject_id, i) mask = '{0}/{1}'.format(which_view, dataset['mask']) rawdata = sio.loadmat(raw)['rawdata'] if dataset['name'] == 'axial_t2': coil_sensitivities = load_file(sen) coil_sensitivities = data2complex( coil_sensitivities['sensitivities']).transpose( 2, 1, 0) else: coil_sensitivities = np.complex64( sio.loadmat(sen)['sensitivities']) mask_func = MaskFunc(center_fractions=[center_fract], accelerations=[acc]) img_und, img_gt, rawdata_und, masks, sensitivity = data_for_training( rawdata, coil_sensitivities, mask_func) # add batch dimension batch_img_und = img_und.unsqueeze(0).to(device) batch_rawdata_und = rawdata_und.unsqueeze(0).to(device)
# t_frames = t_sample[::] # print(len(t_sample)) # v_sample = _mixing_func(t_sample) table = np.zeros((n_r, n_s), dtype=np.complex) for chirp_nr in range(n_r): t_start = chirp_nr * (1 / f_chirp) t_frame = np.linspace(t_start, t_start + T_r, n_s) v_sample = _mixing_func(t_frame) table[chirp_nr, :] = v_sample # plt.plot(get_all_ranges(np.linspace(0,50,))[0]) # plt.show() table = load_file(all_data["exp5_2_3"])[0] # table -= np.average(table, axis=0) # table, range_res, vel_res = load_file("data/18032021/empty_2lane_Raw_0.bin") # table = np.average(table, axis=1) chirp0_samples = table[0, :] chirp0_magnitude = np.abs(fft(chirp0_samples)) frequencies = np.arange(0, n_s // 2) * f_s / n_s # plt.scatter(np.linspace(0,200,200),chirp0_magnitude) # plt.show() def freq_to_range(f):