def evaluate(sess, model, x_, y_): """ 评估在某一数据上的准确率和损失 """ data_len = len(x_) batch_eval = batch_iter(x_, y_, 128) total_loss = 0.0 total_acc = 0.0 for x_batch, y_batch in batch_eval: batch_len = len(x_batch) feed_dict = create_feed_dict(model, x_batch, y_batch, 1.0) loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict) total_loss += loss * batch_len total_acc += acc * batch_len return total_loss / data_len, total_acc / data_len
def evaluate(sess, model, x_, y_): """ 评估在某一数据上的正确率和损失 """ data_size = len(x_) batch_eval = batch_iter(x_, y_, 128) total_loss = 0.0 total_acc = 0.0 for x_batch, y_batch in batch_eval: batch_size = len(x_batch) # 进行预测时不使用dropout feed_dict = create_feed_dict(model, x_batch, y_batch, 1.0) loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict) total_loss += loss * batch_size total_acc += acc * batch_size return total_loss / data_size, total_acc / data_size
def train(model, config, word_to_id, cat_to_id): print("Configuring TensorBoard and Saver...") # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖 tensorboard_dir = config.tensorboard_dir if not os.path.exists(tensorboard_dir): os.makedirs(tensorboard_dir) tf.summary.scalar("loss", model.loss) tf.summary.scalar("accuracy", model.acc) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(tensorboard_dir) # 配置 Saver saver = tf.train.Saver() if not os.path.exists(config.save_dir): os.makedirs(config.save_dir) print("Loading training and validation data_loaders...") # 载入训练集与验证集 start_time = time.time() x_train, y_train = process_file(config.train_dir, word_to_id, cat_to_id, config.seq_length) x_val, y_val = process_file(config.val_dir, word_to_id, cat_to_id, config.seq_length) time_dif = get_time_dif(start_time) print("Time usage:", time_dif) # 创建session with tf.Session() as session: session.run(tf.global_variables_initializer()) writer.add_graph(session.graph) print('Training and evaluating...') start_time = time.time() total_batch = 0 # 已训练的总批次 best_acc_val = 0.0 # 最佳验证集准确率 last_improved = 0 # 记录上一次有提升是第几个批次 require_improvement = 1000 # 如果超过1000个批次未提升,提前结束训练 flag = False for epoch in range(config.num_epochs): print('Epoch:', epoch + 1) batch_train = batch_iter(x_train, y_train, config.batch_size) for x_batch, y_batch in batch_train: feed_dict = create_feed_dict(model, x_batch, y_batch, config.dropout_keep_prob) session.run(model.optim, feed_dict=feed_dict) # 运行优化 total_batch += 1 if total_batch % config.save_per_batch == 0: # 每多少轮次将训练结果写入tensorboard scalar s = session.run(merged_summary, feed_dict=feed_dict) writer.add_summary(s, total_batch) if total_batch % config.print_per_batch == 0: # 每多少轮次输出在训练集和验证集上的性能 feed_dict[model.keep_prob] = 1.0 loss_train, acc_train = session.run( [model.loss, model.acc], feed_dict=feed_dict) loss_val, acc_val = evaluate(session, model, x_val, y_val) if acc_val > best_acc_val: # 保存最好结果 best_acc_val = acc_val last_improved = total_batch saver.save(sess=session, save_path=config.save_dir) improved_str = '*' else: improved_str = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \ + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}' print( msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str)) if total_batch - last_improved > require_improvement: # 验证集正确率长期不提升,提前结束训练 print("No optimization for a long time, auto-stopping...") flag = True break # 跳出循环 if flag: # 同上 break