def predict(self, X, eti=False): # If polynomial transformation if self.poly_degree: X = polynomial_features(X, degree=self.poly_degree) y_pred = X.dot(self.w) # If the lower and upper boundaries for the 95% # equal tail interval should be returned if eti: lower_w = self.eti[:, 0] upper_w = self.eti[:, 1] y_lower_pred = X.dot(lower_w) y_upper_pred = X.dot(upper_w) return y_pred, y_lower_pred, y_upper_pred return y_pred
def fit(self, X, y): # If polynomial transformation if self.poly_degree: X = polynomial_features(X, degree=self.poly_degree) n_samples, n_features = np.shape(X) X_X = X.T.dot(X) # Least squares approximate of beta beta_hat = np.linalg.pinv(X_X).dot(X.T).dot(y) # The posterior parameters can be determined analytically since we assume # conjugate priors for the likelihoods. # Normal prior / likelihood => Normal posterior mu_n = np.linalg.pinv(X_X + self.omega0).dot(X_X.dot(beta_hat)+self.omega0.dot(self.mu0)) omega_n = X_X + self.omega0 # Scaled inverse chi-squared prior / likelihood => Scaled inverse chi-squared posterior nu_n = self.nu0 + n_samples sigma_sq_n = (1.0/nu_n)*(self.nu0*self.sigma_sq0 + \ (y.T.dot(y) + self.mu0.T.dot(self.omega0).dot(self.mu0) - mu_n.dot(omega_n.dot(mu_n)))) # Simulate parameter values for n_draws beta_draws = np.empty((self.n_draws, n_features)) for i in range(self.n_draws): sigma_sq = self._draw_scaled_inv_chi_sq(n=1, df=nu_n, scale=sigma_sq_n) beta = multivariate_normal.rvs(size=1, mean=mu_n, cov=sigma_sq*np.linalg.pinv(omega_n)) # Save parameter draws beta_draws[i, :] = beta # Select the mean of the simulated variables as the ones used to make predictions self.w = np.mean(beta_draws, axis=0) l_eti = 50 - self.cred_int/2 u_eti = 50 + self.cred_int/2 self.eti = np.array([[np.percentile(beta_draws[:,i], q=l_eti), np.percentile(beta_draws[:,i], q=u_eti)] \ for i in range(n_features)])
def predict(self, X): X_transformed = polynomial_features(X, degree=self.degree) return super(PolynomialRegression, self).predict(X_transformed)
def predict(self, X): X = normalize(polynomial_features(X, degree=self.degree)) return super(ElasticNet, self).predict(X)
def fit(self, X, y): X_transformed = polynomial_features(X, degree=self.degree) super(PolynomialRegression, self).fit(X_transformed, y)
def fit(self, X, y): X = normalize(polynomial_features(X, degree=self.degree)) super(ElasticNet, self).fit(X, y)
def predict(self, X): X = normalize(polynomial_features(X, degree=self.degree)) return super(LassoRegression, self).predict(X)
def fit(self, X, y): X = normalize(polynomial_features(X, degree=self.degree)) super(LassoRegression, self).fit(X, y)
def predict(self, X): X = normalize(polynomial_features(X, degree=self.degree)) super(PolynomialRidgeRegression, self).predict(X)
def fit(self, X, y): X = polynomial_features(X, degree=self.degree) super(PolynomialRegression, self).fit(X, y)