#y_hat_batch = [[[0,1]], [[0,1]], [[0,1]]] for i in xrange(batch_num): c_cost = train(x_batch[i], y_hat_batch[i]) #print 'c_cost', c_cost current_cost += c_cost current_cost /= batch_num print 'current_cost', current_cost DataParser.save_parameters(parameters) #current_validate_cost = validate(validation_set) #print 'validate cost', current_validate_cost #if current_validate_cost < validate_cost: # validate_cost = current_validate_cost #else: # break test_data, test_id = DataParser.load_test_data(sample_file) result = test(test_data) result = list(result) result = map(list, zip(*result)) # transpose with open('result.txt', 'w') as f: for i in xrange(len(result)): f.write(test_id[i] + ',') max_value = 0 max_index = -1 candidate = [] candidate_value = [] for j in xrange(len(result[i])): if result[i][j] > 0.8: candidate.append(DataParser.label_index[j]) candidate_value.append(result[i][j]) if result[i][j] > max_value:
for i in xrange(batch_num): c_cost = train(x_batch[i], y_hat_batch[i]) #print 'c_cost', c_cost current_cost += c_cost current_cost /= batch_num print 'current_cost', current_cost DataParser.save_parameters(parameters, 'parameter.txt') DataParser.save_parameters(grad_hists, 'parameter-g.txt') #current_validate_cost = validate(validation_set) #print 'validate cost', current_validate_cost #if current_validate_cost < validate_cost: # validate_cost = current_validate_cost #else: # break test_data, test_id = DataParser.load_test_data(sample_file) result = test(test_data) result = list(result) result = map(list, zip(*result)) # transpose with open('result.txt', 'w') as f: for i in xrange(len(result)): f.write(test_id[i] + ',') max_value = 0 max_index = -1 candidate = [] candidate_value = [] for j in xrange(len(result[i])): if result[i][j] > 0.8: candidate.append(DataParser.label_index[j]) candidate_value.append(result[i][j]) if result[i][j] > max_value: