Example #1
0
class Predictor_cat5():
    def __init__(self):
        self.traits = ['OPN', 'CON', 'EXT', 'AGR', 'NEU']
        self.categories = [
            'OPENNESS', 'CONSCIENTIOUSNESS', 'EXTRAVERSION', 'AGREEABLENESS',
            'NEUROTICISM'
        ]
        self.Pre_cat = {
            trait: cat
            for (trait, cat) in zip(self.traits, self.categories)
        }
        self.models = {
            trait: pickle.load(
                open(os.getcwd() + '/model/' + trait + '_model.pkl', 'rb'))
            for i, trait in enumerate(self.traits)
        }
        self.dp = DataPrep()

    def predict(self, X, traits='All', predictions='All'):
        predictions = {}
        self.dp.transform(X)
        if traits == 'All':
            for trait in self.traits:
                pkl_model = self.models[trait]
                # trait_categories = pkl_model.predict(X, regression=False)
                # predictions[self.Pre_cat[trait]+'  '] = str(trait_categories[0])
                # trait_scores = pkl_model.predict(X, regression=True).reshape(1, -1)
                # predictions[self.Pre_cat[trait]+'  '] = predictions[self.Pre_cat[trait]+'  ']+' '+str(round(trait_scores.flatten()[0]*10))+' % '
                trait_categories_probs = pkl_model.predict_proba(X)
                predictions[self.Pre_cat[trait] + '  '] = str(
                    trait_categories_probs[:, 1][0] * 100)
        return predictions
Example #2
0
class Predictor_cat5():
    def __init__(self):
        """
        Loading all regression and classification models of cat5 models (model no 1 )
        """
        self.traits = ['OPN', 'CON', 'EXT', 'AGR', 'NEU']
        self.categories = [
            'OPENNESS', 'CONSCIENTIOUSNESS', 'EXTRAVERSION', 'AGREEABLENESS',
            'NEUROTICISM'
        ]
        self.Pre_cat = {
            trait: cat
            for (trait, cat) in zip(self.traits, self.categories)
        }
        self.models = {
            trait: pickle.load(open('static/' + trait + '_model.pkl', 'rb'))
            for i, trait in enumerate(self.traits)
        }
        self.dp = DataPrep()

    def predict(self, X, traits='All', predictions='All'):
        """
            Takes features and returns predictions 
             Transforming text into vector and predicting probablity on text 
        """
        predictions = {}
        self.dp.transform(X)
        if traits == 'All':
            for trait in self.traits:
                pkl_model = self.models[trait]
                # trait_categories = pkl_model.predict(X, regression=False)
                # predictions[self.Pre_cat[trait]+'  '] = str(trait_categories[0])
                # trait_scores = pkl_model.predict(X, regression=True).reshape(1, -1)
                # predictions[self.Pre_cat[trait]+'  '] = predictions[self.Pre_cat[trait]+'  ']+' '+str(round(trait_scores.flatten()[0]*10))+' % '
                trait_categories_probs = pkl_model.predict_proba(X)
                predictions[self.Pre_cat[trait] +
                            '  '] = trait_categories_probs[:, 1][0] * 100
        return predictions