import torch from torch import nn,optim from torch.autograd import Variable from torch.utils.data import DataLoader import data_preprocess import os os.environ['CUDA_VISIBLE_DEVICES']='0' use_cuda=torch.cuda.is_available() # 将数据划分为训练集和测试集 X_train, X_test, Y_train, Y_test, word_to_inx, inx_to_word = data_preprocess.tensorFromData() trainDataSet = data_preprocess.TextDataSet(X_train, Y_train) testDataSet = data_preprocess.TextDataSet(X_test, Y_test) trainDataLoader = DataLoader(trainDataSet, batch_size=16, shuffle=True) testDataLoader = DataLoader(testDataSet, batch_size=16, shuffle=False) # 获取字典 # word_to_inx, inx_to_word = data_preprocess.get_dic() word_to_inx, inx_to_word = word_to_inx, inx_to_word len_dic = len(word_to_inx) # 定义超参数 MAXLEN = 64 input_dim = MAXLEN emb_dim = 128 num_epoches = 20 batch_size = 16 learning_rate = 0.001
#!/usr/bin/env python # -*- coding: utf-8 -*- import torch from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader import data_preprocess import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' use_cuda = torch.cuda.is_available() # 将数据划分为训练集和测试集 X_train, X_test, Y_train, Y_test = data_preprocess.tensorFromData() trainDataSet = data_preprocess.TextDataSet(X_train, Y_train) testDataSet = data_preprocess.TextDataSet(X_test, Y_test) trainDataLoader = DataLoader(trainDataSet, batch_size=16, shuffle=True) testDataLoader = DataLoader(testDataSet, batch_size=16, shuffle=False) # 获取字典 word_to_inx, inx_to_word = data_preprocess.get_dic() len_dic = len(word_to_inx) # 定义超参数 MAXLEN = 64 input_dim = MAXLEN emb_dim = 128 num_epoches = 20 batch_size = 16