Example #1
0
def training_the_model(samples_to_collect=100000, seed=100):
    number_of_kernels_per_dim = [10, 8]
    gamma = 0.999
    w_updates = 20
    evaluation_number_of_games = 50
    evaluation_max_steps_per_game = 300
    np.random.seed(seed)

    env = MountainCarWithResetEnv()
    # collect data
    states, actions, rewards, next_states, done_flags = DataCollector(
        env).collect_data(samples_to_collect)
    # get data success rate
    data_success_rate = np.sum(rewards) / len(rewards)
    print(f'Data Success Rate {data_success_rate}')
    # standardize data
    data_transformer = DataTransformer()
    data_transformer.set_using_states(
        np.concatenate((states, next_states), axis=0))
    states = data_transformer.transform_states(states)
    next_states = data_transformer.transform_states(next_states)
    # process with radial basis functions
    feature_extractor = RadialBasisFunctionExtractor(number_of_kernels_per_dim)
    # encode all states:
    encoded_states = feature_extractor.encode_states_with_radial_basis_functions(
        states)
    encoded_next_states = feature_extractor.encode_states_with_radial_basis_functions(
        next_states)
    # set a new linear policy
    linear_policy = LinearPolicy(feature_extractor.get_number_of_features(), 3,
                                 True)
    # but set the weights as random
    linear_policy.set_w(np.random.uniform(size=linear_policy.w.shape))
    # start an object that evaluates the success rate over time
    evaluator = GamePlayer(env, data_transformer, feature_extractor,
                           linear_policy)

    success_rate_vs_iteration = list()

    for lspi_iteration in range(w_updates):
        print(f'Starting LSPI iteration {lspi_iteration}')

        new_w = compute_lspi_iteration(encoded_states, encoded_next_states,
                                       actions, rewards, done_flags,
                                       linear_policy, gamma)
        norm_diff = linear_policy.set_w(new_w)

        success_rate = evaluator.play_games(evaluation_number_of_games,
                                            evaluation_max_steps_per_game)

        success_rate_vs_iteration.append(success_rate)

        if norm_diff < 0.00001:
            break

    print('LSPI Done')
    return success_rate_vs_iteration
    evaluation_number_of_games = 10
    evaluation_max_steps_per_game = 1000

    np.random.seed(123)
    # np.random.seed(234)

    env = MountainCarWithResetEnv()
    # collect data
    states, actions, rewards, next_states, done_flags = DataCollector(
        env).collect_data(samples_to_collect)
    # get data success rate
    data_success_rate = np.sum(rewards) / len(rewards)
    print(f'success rate {data_success_rate}')
    # standardize data
    data_transformer = DataTransformer()
    data_transformer.set_using_states(
        np.concatenate((states, next_states), axis=0))
    states = data_transformer.transform_states(states)
    next_states = data_transformer.transform_states(next_states)
    # process with radial basis functions
    feature_extractor = RadialBasisFunctionExtractor(number_of_kernels_per_dim)
    # encode all states:
    encoded_states = feature_extractor.encode_states_with_radial_basis_functions(
        states)
    encoded_next_states = feature_extractor.encode_states_with_radial_basis_functions(
        next_states)
    # set a new linear policy
    linear_policy = LinearPolicy(feature_extractor.get_number_of_features(), 3,
                                 True)
    # but set the weights as random
    linear_policy.set_w(np.random.uniform(size=linear_policy.w.shape))
    # start an object that evaluates the success rate over time
Example #3
0
def run_lspi(seed,
             w_updates=20,
             samples_to_collect=100000,
             evaluation_number_of_games=1,
             evaluation_max_steps_per_game=200,
             thresh=0.00001,
             only_final=False):
    """
    This is the main lspi function
    :param seed: random seed for the run
    :param w_updates: how many w updates to do
    :param samples_to_collect: how many samples to collect
    :param evaluation_number_of_games: how many game evaluations to do
    :param evaluation_max_steps_per_game: how many steps to allow the evaluation game to run
    :param thresh: the threshold for the stopping condition
    :param only_final: run evaluation only at the end of the run
    :return: None
    """
    res_dir = './Results/'
    np.random.seed(seed)
    number_of_kernels_per_dim = [12, 10]
    gamma = 0.999
    env = MountainCarWithResetEnv()
    # collect data
    states, actions, rewards, next_states, done_flags = DataCollector(
        env).collect_data(samples_to_collect)
    # get data success rate
    data_success_rate = np.sum(rewards) / len(rewards)
    print('success rate: {}'.format(data_success_rate))
    # standardize data
    data_transformer = DataTransformer()
    data_transformer.set_using_states(
        np.concatenate((states, next_states), axis=0))
    states = data_transformer.transform_states(states)
    next_states = data_transformer.transform_states(next_states)
    # process with radial basis functions
    feature_extractor = RadialBasisFunctionExtractor(number_of_kernels_per_dim)
    # encode all states:
    encoded_states = feature_extractor.encode_states_with_radial_basis_functions(
        states)
    encoded_next_states = feature_extractor.encode_states_with_radial_basis_functions(
        next_states)
    # set a new linear policy
    linear_policy = LinearPolicy(feature_extractor.get_number_of_features(), 3,
                                 True)
    # but set the weights as random
    linear_policy.set_w(np.random.uniform(size=linear_policy.w.shape))
    # start an object that evaluates the success rate over time
    evaluator = GamePlayer(env, data_transformer, feature_extractor,
                           linear_policy)

    # success_rate = evaluator.play_games(evaluation_number_of_games, evaluation_max_steps_per_game)
    # print("Initial success rate: {}".format(success_rate))
    performances = []
    if not only_final:
        performances.append(
            evaluator.play_games(evaluation_number_of_games,
                                 evaluation_max_steps_per_game))
    read = False
    if read:
        with open(res_dir + 'weight.pickle', 'rb') as handle:
            new_w = pickle.load(handle)
            linear_policy.set_w(np.expand_dims(new_w, 1))
    for lspi_iteration in range(w_updates):
        print('starting lspi iteration {}'.format(lspi_iteration))

        new_w = compute_lspi_iteration(encoded_states, encoded_next_states,
                                       actions, rewards, done_flags,
                                       linear_policy, gamma)
        with open(res_dir + 'weight.pickle', 'wb') as handle:
            pickle.dump(new_w, handle, protocol=pickle.HIGHEST_PROTOCOL)

        norm_diff = linear_policy.set_w(new_w)
        if not only_final:
            performances.append(
                evaluator.play_games(evaluation_number_of_games,
                                     evaluation_max_steps_per_game))
        if norm_diff < thresh:
            break
    print('done lspi')
    if not only_final:
        with open(res_dir + 'perf' + str(seed) + '.pickle', 'wb') as handle:
            pickle.dump(performances, handle, protocol=pickle.HIGHEST_PROTOCOL)
    if only_final:
        score = evaluator.play_games(evaluation_number_of_games,
                                     evaluation_max_steps_per_game)
        with open(res_dir + 'final_perf' + str(samples_to_collect) + '.pickle',
                  'wb') as handle:
            pickle.dump(score, handle, protocol=pickle.HIGHEST_PROTOCOL)
    evaluator.play_game(evaluation_max_steps_per_game, render=True)