def main(): filenm = "surf3" # tsne_x,X_Ids = TSNE_Surf(filenm) Tsne, ids = tsneHandler.getTSNEwithIds(filenm) img = plot_visualisation.plot_raw_TSNE(Tsne, ids, filenm) # img = cv2.imread(dirm.outputDirectory+"surf3.jpg") plot_visualisation.displayInteractiveImage(img, "surf3")
def main(): filenm = "surf3" #tsne_x,X_Ids = TSNE_Surf(filenm) Tsne, ids = tsneHandler.getTSNEwithIds(filenm) img = plot_visualisation.plot_raw_TSNE(Tsne, ids, filenm) #img = cv2.imread(dirm.outputDirectory+"surf3.jpg") plot_visualisation.displayInteractiveImage(img, "surf3")
def Kmenas_General(tablename): conn = sqlite3.connect(dirm.sqlite_file) c = conn.cursor() cmd = 'SELECT * FROM {tn}'.format(tn=tablename) c.execute(cmd) all_rows = c.fetchall() ids = [] data = [] for row in all_rows: ids.append(str(row[0])) data.append(row[1:]) X = np.array(data) estimators = { 'k_means_3': KMeans(n_clusters=3), 'k_means_5': KMeans(n_clusters=3), 'k_means_8': KMeans(n_clusters=8) } est = KMeans(n_clusters=3) est.fit(X) labels = est.labels_ labels_np = np.array(labels) results = [] tsne_vals, ids2 = tsneHandler.getTSNEwithIds(tablename) tsne_x, tsne_y = zip(*tsne_vals) results = zip(ids, ids2, tsne_x, tsne_y, labels_np) #header = ('id','id2','tsne_x','tsne_y','lables') #results_w_header = header + results #print results_w_header util.writetoCSV(results, tablename + "_clustered")
def Kmenas_General(tablename): conn = sqlite3.connect(dirm.sqlite_file) c = conn.cursor() cmd = 'SELECT * FROM {tn}'.format(tn=tablename) c.execute(cmd) all_rows = c.fetchall() ids = [] data = [] for row in all_rows: ids.append(str(row[0])) data.append(row[1:]) X = np.array(data) estimators = {'k_means_3': KMeans(n_clusters=3),'k_means_5':KMeans(n_clusters=3),'k_means_8': KMeans(n_clusters=8)} est = KMeans(n_clusters=3) est.fit(X) labels = est.labels_ labels_np = np.array(labels) results = [] tsne_vals,ids2 = tsneHandler.getTSNEwithIds(tablename) tsne_x,tsne_y = zip(*tsne_vals) results = zip(ids,ids2,tsne_x,tsne_y,labels_np) #header = ('id','id2','tsne_x','tsne_y','lables') #results_w_header = header + results #print results_w_header util.writetoCSV(results, tablename + "_clustered")
#get filename fs = imageIDs N = len(fs) #N = length(fs); #size of final image S = 10008; G = np.zeros((S,S,3)) # ,'uint8' #print G # size of every image thumbnail s = 278 xnum = S/s ynum = S/s used = np.zeros((N, 1)) qq=len(range(0,S,s)) abes = np.zeros((qq*2,2)) print len(abes) i=0 for a in range(0,S,s): for b in range(0,S,s): abes[i,:] = [a,b] i=i+1; print abes tsne_vals,ids = tsneHandler.getTSNEwithIds("colourDistribution") plotCompTSNE(tsne_vals, ids, "colourPlot")