def __init__(self, dsm_path=None, terrain_buffer=0): self.dsm_path = dsm_path self.terrain_buffer = terrain_buffer self.output_measurements = {m['name']: Measurement(**m) for m in WOFS_OUTPUT} if dsm_path is None: # TODO: This should be recorded in the dataset metadata, but we haven't allowed for this # in Transformation classes. _LOG.warning('WARNING: Path or URL to a DSM is not set. Terrain shadow mask will not be calculated.')
def measurements(self, input_measurements): return { 'classification': Measurement(name='classification', dtype='uint8', nodata=0, units='1') }
def measurements(self, input_measurements): return { 'vegetat_veg_cat': Measurement(name='vegetat_veg_cat', dtype='float32', nodata=float('nan'), units='1') }
def __init__(self, dsm_path=None, terrain_buffer=0, c2=False): self.dsm_path = dsm_path self.terrain_buffer = terrain_buffer self.c2 = c2 self.output_measurements = { m['name']: Measurement(**m) for m in WOFS_OUTPUT } if dsm_path is None: _LOG.warning( 'WARNING: Path or URL to a DSM is not set. Terrain shadow mask will not be calculated.' )
def __init__(self, median_path=None, indstr=None, n_workers=2): # directory or location where the long term mean of indices locate self.median_path = median_path # Patterns of indices file,.e.g '56HLH_{}_2015-01-01_2020-12-31-cog.tif' self.indstr = indstr # number of workers of Dask client self.n_workers = n_workers self.output_measurements = { m['name']: Measurement(**m) for m in NMASK_OUTPUT }
def measurements(self, input_measurements): return {'cultman_agr_cat': Measurement(name='cultman_agr_cat', dtype='float32', nodata=float('nan'), units='1')}