def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} params = clf.get_params() logging.info("Selected XGBoost Params are %s " % params) safe_del(ret, "xgboost") ret["xgboost"] = {} ret["xgboost"]["max_depth"] = params["max_depth"] ret["xgboost"]["learning_rate"] = params["learning_rate"] ret["xgboost"]["n_estimators"] = params["n_estimators"] ret["xgboost"]["nthread"] = params["n_jobs"] if params[ "n_jobs"] > 0 else -1 # TODO: change => migration ? ret["xgboost"]["gamma"] = params["gamma"] ret["xgboost"]["min_child_weight"] = params["min_child_weight"] ret["xgboost"]["max_delta_step"] = params["max_delta_step"] ret["xgboost"]["subsample"] = params["subsample"] ret["xgboost"]["colsample_bytree"] = params["colsample_bytree"] ret["xgboost"]["colsample_bylevel"] = params["colsample_bylevel"] ret["xgboost"]["alpha"] = params["reg_alpha"] ret["xgboost"]["lambda"] = params["reg_lambda"] ret["xgboost"]["seed"] = params[ "random_state"] # TODO: change => migration ? ret["xgboost"]["impute_missing"] = True if params["missing"] else False ret["xgboost"]["missing"] = params["missing"] ret["xgboost"]["base_score"] = params["base_score"] ret["xgboost"]["scale_pos_weight"] = params["scale_pos_weight"] ret["xgboost"]["enable_early_stopping"] = fit_params.get( 'early_stopping_rounds') is not None ret["xgboost"]["early_stopping_rounds"] = fit_params.get( 'early_stopping_rounds') ret["xgboost"]["booster"] = params.get("booster") ret["xgboost"]["objective"] = params.get("objective").replace(":", "_") return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} params = clf.get_params() logging.info("Selected Ordinary Least Squares Params are %s " % params) safe_del(ret, "least_squares") ret["n_jobs"] = params["n_jobs"] return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "ridge_grid") params = clf.get_params() ret["lasso"] = {} if hasattr(clf, "alpha_"): ret["lasso"]["alpha"] = params.get("alpha", clf.alpha_) else: ret["lasso"]["alpha"] = params.get("alpha", 0) return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "logit_grid") params = clf.get_params() logging.info("LR Params are %s " % params) ret["logit"] = { "penalty": params["penalty"], "multi_class": params["multi_class"], "C": params["C"] } return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "dtc_classifier_grid") params = clf.get_params() logging.info("DT params are %s " % params) ret["dt"] = { "max_depth": params["max_depth"], "criterion": params["criterion"], "min_samples_leaf": params["min_samples_leaf"], "splitter": params["splitter"] } return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} params = clf.get_params() logging.info("Selected KNN Params are %s " % params) safe_del(ret, "knn_grid") ret["knn"] = { "k": params["n_neighbors"], "distance_weighting": params["weights"] == "distance", "algorithm": params["algorithm"], "p": params["p"], "leaf_size": params["leaf_size"], } return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} params = clf.get_params() logging.info("Selected SGD Params are %s " % params) safe_del(ret, "sgd_grid") ret["sgd"] = { "loss": params["loss"], "penalty": params["penalty"], "alpha": params["alpha"], "l1_ratio": params["l1_ratio"], "n_jobs": params["n_jobs"], "n_iter": clf.n_iter_ } return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} params = clf.get_params() logging.info("Selected SVC Params are %s " % params) safe_del(ret, "svc_grid") ret["svm"] = { "C": params["C"], "kernel": params["kernel"], "gamma": 0.0 if params["gamma"] == 'auto' else params["gamma"], "tol": params["tol"], "max_iter": params["max_iter"], "coef0": params["coef0"] } return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "extra_trees_grid") params = clf.get_params() logging.info("Extra trees Params are %s " % params) ret["extra_trees"] = { "estimators": len(clf.estimators_), "njobs": params["n_jobs"] if params["n_jobs"] > 0 else -1, "max_tree_depth": params["max_depth"], "min_samples_leaf": params["min_samples_leaf"], "selection_mode": get_selection_mode(params["max_features"]), } if ret["extra_trees"]["selection_mode"] == "number": ret["extra_trees"]["max_features"] = clf.max_features if ret["extra_trees"]["selection_mode"] == "prop": ret["extra_trees"]["max_feature_prop"] = clf.max_features amp["other"]["rf_min_samples_split"] = params["min_samples_split"] return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "gbt_classifier_grid") params = clf.get_params() logging.info("GBT Params are %s " % params) ret["gbt"] = { "n_estimators": len(clf.estimators_), "max_depth": params["max_depth"], "learning_rate": params["learning_rate"], "min_samples_leaf": params["min_samples_leaf"], "selection_mode": get_selection_mode(params["max_features"]), "loss": params["loss"] } if ret["gbt"]["selection_mode"] == "number": ret["gbt"]["max_features"] = ret["gbt_selection_mode"] if ret["gbt"]["selection_mode"] == "prop": ret["gbt"]["max_feature_prop"] = ret["gbt_selection_mode"] return amp
def output_params(self, ret, clf, fit_params): amp = {"resolved": ret, "other": {}} safe_del(ret, "rf_classifier_grid") params = clf.get_params() logging.info("Obtained RF CLF params: %s " % params) ret["rf"] = { "estimators": len(clf.estimators_), "max_tree_depth": params["max_depth"], "min_samples_leaf": params["min_samples_leaf"], "selection_mode": get_selection_mode(params["max_features"]), } if ret["rf"]["selection_mode"] == "number": ret["rf"]["max_features"] = clf.max_features if ret["rf"]["selection_mode"] == "prop": ret["rf"]["max_feature_prop"] = clf.max_features amp["other"]["rf_min_samples_split"] = params["min_samples_split"] return amp