def FetchBU3DData(DataPath, facePointMult3=21081, fileCnt=1000, printTime=False, valCnt=400, trainDirName="train_Resampled", testDirName="val_Resampled", landmarkDirName="landmarks"): startTime = time.time() if printTime: print("Loading Data...") X = np.zeros((fileCnt, facePointMult3 + 83 * 3)) Y = np.zeros((valCnt, facePointMult3 + 83 * 3)) Y_ = np.zeros((valCnt, facePointMult3 + 83 * 3)) cnt = 0 trainDataPath = os.path.join(DataPath, trainDirName) testDataPath = os.path.join(DataPath, testDirName) landmarkPath = os.path.join(DataPath, landmarkDirName) # print(landmarkPath) list_dirs = os.walk(trainDataPath) for _, _, files in list_dirs: for f in files: if f[-3:] == 'xyz': if cnt >= fileCnt: break bndFile = f[:-3] + 'bnd' xyzData = dataio.loadData(os.path.join(trainDataPath, f)) bndData = dataio.loadData(os.path.join(landmarkPath, bndFile)) F = combineData(xyzData, bndData) X[cnt, :] = F.ravel() cnt += 1 list_dirs = os.walk(testDataPath) cnt = 0 for _, _, files in list_dirs: for f in files: if f[-3:] == 'xyz': if cnt >= valCnt: break bndFile = f[:-3] + 'bnd' xyzData = dataio.loadData(os.path.join(testDataPath, f)) bndData = np.zeros((83, 3)) bndTruth = dataio.loadData(os.path.join(landmarkPath, bndFile)) F = combineData(xyzData, bndData) F_GT = combineData(xyzData, bndTruth) Y_[cnt, :] = F.ravel() Y[cnt, :] = F_GT.ravel() cnt += 1 print("Data loaded.\nTrain Shape:", X.shape, " | Test Shape:", Y.shape) if printTime: print("Cost {} seconds.".format(time.time() - startTime)) return X, Y_, Y #Train, toLearn, GT
def demo(readLocation="../data/sensor_data/late_small.dat"): import dataio oData = dataio.loadData(readLocation) val = bestCorrelation(oData.data, offsetMax=3, offsetMin=1) neighbors = createNeighbors(val) oData.correlation = val oData.neighbors = neighbors dataio.saveData(readLocation, oData)
def demo(readLocation = "../data/sensor_data/late_small.dat"): import dataio oData = dataio.loadData(readLocation) val = bestCorrelation(oData.data, offsetMax = 3, offsetMin = 1) neighbors = createNeighbors(val) oData.correlation = val oData.neighbors = neighbors dataio.saveData(readLocation, oData)
def FetchAllData(TrainDataPath): # ExportFace = "ExportBnd" curPath = os.getcwd() FileCnt = 1000 X = np.zeros((FileCnt, 23349)) list_dirs = os.walk(TrainDataPath) i = 0 for root, _, files in list_dirs: for f in files: if f[-3:] == 'xyz': if i >= FileCnt: break # print(f) bndFile = f[:-3] + 'bnd' xyzData = dataio.loadData(os.path.join(TrainDataPath, f)) bndData = dataio.loadData(os.path.join(TrainDataPath, bndFile), spliter='\t\t') # print(bndData.shape) F = combineData(xyzData, bndData) X[i, :] = F.ravel() i += 1 # print(X) return X
def FetchXYZData(TestDataPath): curPath = os.getcwd() FileCnt = 20 X = np.zeros((FileCnt, 23349)) list_dirs = os.walk(TestDataPath) i = 0 for root, _, files in list_dirs: for f in files: if f[-3:] == 'xyz': if i >= FileCnt: break print(f) xyzData = dataio.loadData(os.path.join(TestDataPath, f)) bndData = np.zeros((83, 3)) #print(bndData.shape) F = combineData(xyzData, bndData, normalize=False) X[i, :] = F.ravel() i += 1 # print(X) return X
#directories.append("detectionsOct2007") #directories.append("detectionsNov2007") #directories.append("detectionsDec2007") #directories.append("detectionsJan2008") #directories.append("detectionsFeb2008") #directories.append("detectionsMar2008") #directories.append("detectionsApr2008") directories.append("detectionsJan2008-Mar2008") #directories.append("detectionsSep2007-Dec2007") for i in range(1, 11): for j in range(0, 5): sensors.append(i*10 + j) print "Sensors:" + str(len(sensors)) tdMatrix = calculateTDMatrix(readLoc, startTime, endTime, interval, directories, sensors) print tdMatrix oData = None try: oData = dataio.loadData(fileLoc) except: oData = bbdata.Dataset(None) oData.tdMatrix = tdMatrix dataio.saveData(fileLoc, oData)
import markov_anneal import dataio import warnings import os import random import suppress warnings.simplefilter("ignore") readLocation = "../data/sensor_data/small_54_64.dat" splitLen = 8 if __name__ == "__main__": oData = dataio.loadData(readLocation) obs = 2**oData.data.shape[1] states = splitLen sData = markov_anneal.splitActivityMax(oData.cd[0:50000], splitLen) scores = [0, 0] entropys = [0, 0] for i in range(2, 26): print "Models:" + str(i) bestScore = -1 bestModels = [] bestData = [] bestOut = []
#directories.append("detectionsOct2007") #directories.append("detectionsNov2007") #directories.append("detectionsDec2007") #directories.append("detectionsJan2008") #directories.append("detectionsFeb2008") #directories.append("detectionsMar2008") #directories.append("detectionsApr2008") directories.append("detectionsJan2008-Mar2008") #directories.append("detectionsSep2007-Dec2007") for i in range(1, 11): for j in range(0, 5): sensors.append(i * 10 + j) print "Sensors:" + str(len(sensors)) tdMatrix = calculateTDMatrix(readLoc, startTime, endTime, interval, directories, sensors) print tdMatrix oData = None try: oData = dataio.loadData(fileLoc) except: oData = bbdata.Dataset(None) oData.tdMatrix = tdMatrix dataio.saveData(fileLoc, oData)
import myICP import dataio data1 = dataio.loadData("1_calib.asc") data2 = dataio.loadData("2_calib.asc") _, _, data2_ = myICP.icp(data2, data1, maxIteration=50, tolerance=0.00001, controlPoints=1000) dataio.outputData("2_icp.asc", data2_)
st = "2008-02-01 00:00:00" et = "2008-03-31 23:59:59" st = datetime.datetime.strptime(st, "%Y-%m-%d %H:%M:%S") et = datetime.datetime.strptime(et, "%Y-%m-%d %H:%M:%S") sensors = [53, 52, 51, 50, 44] validDays = [0, 1, 2, 3, 4, 5, 6] compress = 2 counts = [0] * len(validDays) splitLen = 8 tdMatrix = [] if __name__ == "__main__": mData = dataio.loadData(modelFile) mData.matrixToModel(mData.modelList) models = mData.models for d in validDays: print "Day " + str(d) print " Getting data." #Iterate over all valid days. cd, td = bbdata.comp(st, et, \ vDays = [d], \ comp = compress, \ sens = sensors) print " Splitting." #Get the split calculation finished. sData = markov_anneal.splitActivityMax(cd, td, splitLen)