Example #1
0
def get_manifest_data(bucket, team, dataset, manifest_key):
    """ Returns a list of items from manifests control table """
    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)
    s3_interface = S3Interface()
    local_path = s3_interface.download_object(bucket, manifest_key)
    ddb_keys = []
    items = []
    with open(local_path, "r") as raw_file:
        file_names = [
            file_name.strip().split("/")[-1] for file_name in raw_file
        ]
        for file in file_names:
            ddb_keys.append({
                "dataset_name": team + "-" + dataset,
                "manifest_file_name": manifest_key.split("/")[-1],
                "datafile_name": file
            })
    for ddb_key in ddb_keys:
        try:
            items.append(
                dynamo_interface.get_item_from_manifests_control_table(
                    ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                    ddb_key["datafile_name"]))
        except KeyError:
            logger.error("The manifest file has not been processed in Stage A")
            raise Exception("Manifest File has not been processed in Stage A")

    return items
Example #2
0
def lambda_handler(event, context):
    """Checks if the file to be processed is  manifest driven 

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with Processed Bucket and Key(s)
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        keys_to_process = event['body']['keysToProcess']
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        ddb_key = team + "-" + dataset

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh_id = octagon_client.start_pipeline_execution(
            pipeline_name='{}-{}-stage-{}'.format(team, pipeline,
                                                  stage[-1].lower()),
            dataset_name='{}-{}'.format(team, dataset),
            comment=event)

        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        response = dynamo_interface.get_transform_table_item(ddb_key)
        logger.info("Querying DynamoDB to check for manifest details")

        event["body"]["manifest_enabled"] = response["manifest_enabled"]
        event["body"]["manifest_details"] = response["manifest_details"]

        # Call custom transform created by user and process the file
        event['body']['peh_id'] = peh_id
        remove_content_tmp()
        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        remove_content_tmp()
        raise e
    return event
def lambda_handler(event, context):
    """ Checks if a dataset is driven by manifest file
    
    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """

    try:
        logger.info("Fetching event data from previous step")
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        env = event['body']['env']
        ddb_key = team+"-"+dataset

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (
            octagon.OctagonClient()
            .with_run_lambda(True)
            .with_configuration_instance(event['body']['env'])
            .build()
        )
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)
        
        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        response = dynamo_interface.get_transform_table_item(ddb_key)

        event["body"]["manifest_enabled"] = response["manifest_enabled"]
        event["body"]["manifest_details"] = response["manifest_details"]

        octagon_client.update_pipeline_execution(status="{} {} Processing".format(stage, component),
                                                 component=component)

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(component=component,
                                                     issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e

    return event
def lambda_handler(event, context):
    """Updates the objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on S3 event
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with Processed Bucket and Key
    """
    try:
        logger.info('Fetching event data from previous step')
        object_metadata = json.loads(event)
        stage = object_metadata['pipeline_stage']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(object_metadata['env']).build())
        object_metadata['peh_id'] = octagon_client.start_pipeline_execution(
            pipeline_name='{}-{}-stage-{}'.format(object_metadata['team'],
                                                  object_metadata['pipeline'],
                                                  stage[-1].lower()),
            dataset_name='{}-{}'.format(object_metadata['team'],
                                        object_metadata['dataset']),
            comment=event)
        # Add business metadata (e.g. object_metadata['project'] = 'xyz')

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        dynamo_interface.update_object_metadata_catalog(object_metadata)

        logger.info(
            'Passing arguments to the next function of the state machine')
        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e
    return {'statusCode': 200, 'body': object_metadata}
Example #5
0
    def stage_transform(self, team, dataset, stage):
        """Returns relevant stage Transformation

        Arguments: 
            team {string} -- Team owning the transformation 
            dataset {string} -- Dataset targeted by transformation 
        Returns: 
            class -- Transform object 
        """
        stage_suffix = stage[-1].lower()
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)
        dataset_transforms = dynamo_interface.get_transform_table_item(
            '{}-{}'.format(team, dataset))['transforms'][
                'stage_{}_transform'.format(stage_suffix)]
        transform_info = "datalake_library.transforms.stage_{}_transforms.{}".format(
            stage_suffix, dataset_transforms)
        return getattr(import_module(transform_info), 'CustomTransform')
def lambda_handler(event, context):
    try:
        logger.info('Fetching event data from previous step')
        processed_keys = event['body']['keysToProcess']
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        bucket = event['body']['bucket']

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        wlm_ddb_table = dynamo_interface.wlm_control_table
        item = dynamo_interface.get_item(wlm_ddb_table, {"name":"{}-{}-{}".format(team, dataset,processed_keys[0].split("/")[-2])})
        priority = item.get('priority', None)
        print(priority)
        
        print(''.join(
            [stage[:-1], chr(ord(stage[-1]))]))
        logger.info('Sending messages to right priority SQS queue')
        sqs_config = SQSConfiguration(team, dataset, ''.join(
            [stage[:-1], chr(ord(stage[-1]))]), priority) #Workload management changes
        sqs_interface = SQSInterface(sqs_config.get_stage_queue_name_wlm) #Workload management changes
        sqs_interface.send_message_to_fifo_queue(json.dumps(event), '{}-{}'.format(team, dataset))

        
        logger.info("lambda Completed")
                
        return {
            'statusCode': 200
        }

    except Exception as e:
        raise e
        
Example #7
0
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['job']['peh_id']
        keys_to_process = event['body']['keysToProcess']
        s3_path = "post-stage/{}/manifests/{}/{}".format(
            team, dataset, keys_to_process[0].split("/")[-1])

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

        logger.info("Updating manifests control table")
        items = get_manifest_data(bucket, team, dataset, keys_to_process[0])
        ddb_keys = get_ddb_keys(items)

        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "COMPLETED")

        logger.info("Move manifest file to post stage")
        kms_key = KMSConfiguration(team).get_kms_arn
        s3_interface = S3Interface()
        s3_interface.copy_object(bucket,
                                 keys_to_process[0],
                                 bucket,
                                 s3_path,
                                 kms_key=kms_key)

        logger.info("Removing manifest file from pre-stage")

        s3_interface.delete_objects(bucket, keys_to_process[0])

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "FAILED", None, "Failed in Post Update")
        raise e
    return 200
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    try:
        logger.info('Fetching event data from previous step')
        processed_keys = event['body']['processedKeys']
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        bucket = S3Configuration().stage_bucket
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }

            dynamo_interface.update_object_metadata_catalog(object_metadata)

        #Workload management changes
        #---------------------------
        wlm_ddb_table = dynamo_interface.wlm_control_table
        item = dynamo_interface.get_item(
            wlm_ddb_table, {
                "name":
                "{}-{}-{}".format(team, dataset,
                                  processed_keys[0].split("/")[-2])
            })
        priority = item.get('priority', None)
        print(priority)
        #---------------------------

        logger.info('Sending messages to next SQS queue if it exists')
        sqs_config = SQSConfiguration(team, dataset, ''.join(
            [stage[:-1], chr(ord(stage[-1]) + 1)]),
                                      priority)  #Workload management changes
        sqs_interface = SQSInterface(
            sqs_config.get_stage_queue_name_wlm)  #Workload management changes
        sqs_interface.send_batch_messages_to_fifo_queue(
            processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e
    return 200
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    def replace_decimals(obj):
        if isinstance(obj, list):
            for i in range(len(obj)):
                obj[i] = replace_decimals(obj[i])
            return obj
        elif isinstance(obj, dict):
            for k, v in obj.items():
                obj[k] = replace_decimals(v)
            return obj
        elif isinstance(obj, set):
            return set(replace_decimals(i) for i in obj)
        elif isinstance(obj, decimal.Decimal):
            if obj % 1 == 0:
                return int(obj)
            else:
                return float(obj)
        else:
            return obj

    def get_table_partitions(db, tbl):
        glue_response = glue_client.get_table(DatabaseName=db, Name=tbl)
        logger.debug('Glue get_table response: {}'.format(glue_response))
        return glue_response['Table']['PartitionKeys']

    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset1 = event['body']['dataset']
        peh_id = event['body']['job']['peh_id']
        env = event['body']['env']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info(
            'Storing metadata to DynamoDB and tagging resulting S3 Objects')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset1,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

            tag_keys = ['org', 'app', 'env', 'team', 'dataset']
            tag_dict = {key: object_metadata[key] for key in tag_keys}
            S3Interface().tag_object(bucket, key, tag_dict)

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))
        prestage_table = event['body']['dest_table']['name']
        prestage_db = event['body']['dest_db']
        dest_part_name = event['body']['dest_table']['part_name']
        dest_part_value = event['body']['dest_table']['part_value']
        processOutput = {}
        if dest_part_name is not '' and dest_part_value is not '':
            partitions = []
            part_dict = {"name": dest_part_name, "value": dest_part_value}
            partitions.append(part_dict)
            processOutput['partitions'] = partitions
        processOutput['processed_keys'] = processed_keys
        ssmresponse = ssmcli.get_parameter(
            Name=f'/SDLF/DDB/{team}/{pipeline}/DependenciesByTable')
        ddb_dependencies_by_table = ssmresponse['Parameter']['Value']
        ddb_table = dynamodb.Table(ddb_dependencies_by_table)
        ssmresponse = ssmcli.get_parameter(
            Name=f'/SDLF/DDB/{team}/{pipeline}/Dependencies')
        ddb_dependencies = ssmresponse['Parameter']['Value']
        consulta = f'{prestage_db.lower()}.{prestage_table.lower()}'
        logger.info(consulta)
        response = ddb_table.get_item(Key={'table_name': consulta})
        logger.info(f'Response {response}')
        if 'Item' in response:
            list_transforms = response['Item']['list_transforms']
            num_of_transforms = len(list_transforms)
            logger.debug(f'Response {response}')
            logger.info(f'This table triggers {num_of_transforms} datasets')
            next_stage = 'B'
            stage_b_message = {}
            for dataset in list_transforms:
                ddb_steps = dynamodb.Table(ddb_dependencies)
                logger.info(dataset)
                response = ddb_steps.get_item(Key={'dataset': dataset})
                logger.info(f'Response {response}')
                num_of_transforms = len(list_transforms)
                item = response['Item']
                dest_table = item['dataset'].split('.')[1]
                dest_db = item['dataset'].split('.')[0]
                dependencies = item['dependencies']
                date_substitutions = replace_decimals(
                    item.get('date_substitutions', []))
                logger.info(f'Dependencies: {dependencies}')
                partition = item.get('partitionColumn', '')
                partition_mask = item.get('partitionPythonMask', None)
                partition_value_formatted = None
                table_check = []
                for table in dependencies:
                    table_name = table['TableName'].split('.')[1]
                    table_db = table['TableName'].split('.')[0]
                    table_partition = table.get('FieldColumn', '')
                    table_partition_format = table.get('DateExpression', None)
                    relativedelta_attributes = replace_decimals(
                        table.get('relativedelta_attributes', None))
                    table_partitions = processOutput.get('partitions', [])
                    usage = table.get('Usage', 'validate').lower()
                    if usage == 'validate':
                        if prestage_db == table_db and prestage_table == table_name:
                            logger.info(
                                f'This table does not update/overwrite {dataset} dataset'
                            )
                            break
                        else:
                            logger.debug(
                                f'Table {table_db}.{table_name} is not the trigger table'
                            )
                    else:
                        if prestage_db.lower() == table_db.lower(
                        ) and prestage_table.lower() == table_name.lower():
                            # dst_tbl_partitions = get_table_partitions(prestage_db,prestage_table)
                            partition_value_formatted = ''
                            # If dest table has partitions and source table has partitions
                            logger.debug(
                                f'Partition: {partition}, table_partitions: {table_partitions}'
                            )
                            if table_partitions and table_partition_format is not None:
                                table_partition_value = table_partitions[0][
                                    'value']
                                value = datetime.strptime(
                                    table_partition_value,
                                    table_partition_format)
                                target_value = value - relativedelta(
                                    **relativedelta_attributes)
                                partition_value_formatted = target_value.strftime(
                                    partition_mask)
                                logger.info(
                                    f'This table {usage.upper()} dataset {dest_table} '
                                    f' Partition {partition} = {partition_value_formatted}'
                                )
                                # validate(table_db, table_name, table_partitions)
                            stage_b_message[
                                'prev_stage_processed_keys'] = processed_keys
                            stage_b_message['team'] = team
                            stage_b_message['pipeline'] = pipeline
                            stage_b_message['pipeline_stage'] = ''.join(
                                [stage[:-1], next_stage])
                            stage_b_message['dataset'] = dataset1
                            stage_b_message['org'] = event['body']['org']
                            stage_b_message['app'] = event['body']['app']
                            stage_b_message['env'] = event['body']['env']
                            stage_b_message['behaviour'] = table[
                                'Usage'].lower()
                            stage_b_message['dest_db'] = dest_db
                            stage_b_message['dest_table'] = {}
                            stage_b_message['dest_table']['name'] = dest_table
                            stage_b_message['dest_table'][
                                'part_name'] = partition
                            stage_b_message['dest_table'][
                                'part_value'] = partition_value_formatted
                            stage_b_message['steps'] = item['steps']
                            stage_b_message[
                                'date_substitutions'] = date_substitutions
                            logger.info(
                                'Sending messages to next SQS queue if it exists'
                            )
                            # GEt queue by SSM
                            logger.info(stage_b_message)
                            sqs_config = SQSConfiguration(
                                team, pipeline, stage)
                            sqs_interface = SQSInterface(
                                sqs_config.get_stage_queue_name)
                            sqs_interface.send_message_to_fifo_queue(
                                json.dumps(stage_b_message),
                                '{}-{}'.format(team, pipeline))
                            break

        else:
            logger.info(f'This table triggers 0 datasets')

        octagon_client.update_pipeline_execution(
            status=f'{stage} {component} Processing', component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment=f'{stage} {component} Error: {repr(e)}')
        raise e
    return 200
    def transform_object(self, bucket, keys, team, dataset):
        #######################################################
        # We assume a Glue Job has already been created based on
        # customer needs. This function makes an API call to start it
        #######################################################
        job_name = 'sdlf-{}-{}-glue-job'.format(
            team, dataset)  # Name of the Glue Job

        ### Create the list of s3 keys to be processed by the glue job
        ### keys will contain a single file for manifest processing

        items = get_manifest_data(bucket, team, dataset, keys[0])

        s3_keys = get_s3_keys(items)

        files = []
        file_names = ""
        for key in s3_keys:
            files.append(key.split('/')[-1])
            if file_names is not None:
                file_names = file_names + "|" + key
            else:
                file_names = key

        ### Update Manifests Control Table
        ddb_keys = get_ddb_keys(items)

        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "PROCESSING")

        # S3 Path where Glue Job outputs processed keys
        # IMPORTANT: Build the output s3_path without the s3://stage-bucket/
        processed_keys_path = 'post-stage/{}/{}'.format(team, dataset)
        # Submitting a new Glue Job
        job_response = client.start_job_run(
            JobName=job_name,
            Arguments={
                # Specify any arguments needed based on bucket and keys (e.g. input/output S3 locations)
                '--JOB_NAME':
                'sdlf-{}-{}-glue-job'.format(team, dataset),
                '--SOURCE_LOCATION':
                's3://{}/'.format(bucket),
                '--OUTPUT_LOCATION':
                's3://{}/{}'.format(bucket, processed_keys_path),
                '--FILE_NAMES':
                file_names,
                '--job-bookmark-option':
                'job-bookmark-enable'
            },
            MaxCapacity=2.0)
        # Collecting details about Glue Job after submission (e.g. jobRunId for Glue)
        json_data = json.loads(
            json.dumps(job_response, default=datetimeconverter))
        job_details = {
            "jobName": job_name,
            "jobRunId": json_data.get('JobRunId'),
            "jobStatus": 'STARTED',
            "files": list(set(files))
        }

        #######################################################
        # IMPORTANT
        # This function must return a dictionary object with at least a reference to:
        # 1) processedKeysPath (i.e. S3 path where job outputs data without the s3://stage-bucket/ prefix)
        # 2) jobDetails (i.e. a Dictionary holding information about the job
        # e.g. jobName and jobId for Glue or clusterId and stepId for EMR
        # A jobStatus key MUST be present in jobDetails as it's used to determine the status of the job)
        # Example: {processedKeysPath' = 'post-stage/engineering/legislators',
        # 'jobDetails': {'jobName': 'sdlf-engineering-legislators-glue-job', 'jobId': 'jr-2ds438nfinev34', 'jobStatus': 'STARTED'}}
        #######################################################
        response = {
            'processedKeysPath': processed_keys_path,
            'jobDetails': job_details
        }

        return response
def get_dependent_datasets(team_name, dataset_name):
    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)
    transform_info = dynamo_interface.get_transform_table_item("{}-{}".format(
        team_name, dataset_name))
    return transform_info["dependencies"]
Example #12
0
def lambda_handler(event, context):
    """ Load Datafile metadata in manifests control table
        Check if manifest file is available within the threshold
    
    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    s3_interface = S3Interface()
    stage_bucket = S3Configuration().stage_bucket

    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)
    current_time = dt.datetime.utcnow()
    current_timestamp = current_time.timestamp()

    try:
        logger.info("Fetching event data from previous step")
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        env = event['body']['env']
        bucket = event['body']['bucket']
        input_file_key = event['body']['key']
        input_file_name = input_file_key.split("/")[-1]
        manifest_file_pattern = event['body']['manifest_details'][
            'regex_pattern']
        manifest_timeout = int(
            event['body']['manifest_details']['manifest_timeout'])

        if 'manifest_interval' in event['body']:
            manifest_interval = event['body']['manifest_interval']
        else:
            manifest_interval = current_timestamp

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(env).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)

        ### List S3 Objects for the manifest file in the manifest prefix
        ### For this to work the manifest should have been loaded into DynamoDB

        manifest_key = "pre-stage/{}/manifests/{}/".format(team, dataset)
        processed_manifest_keys = s3_interface.list_objects(
            stage_bucket, manifest_key)

        matched_keys = []
        items = []

        if not processed_manifest_keys:
            logger.info(
                "Manifest File has not been loaded, sleeping for 5 mins")
            time.sleep(300)
            manifest_file_loaded = "False"

        else:
            for manifest_file_key in processed_manifest_keys:
                manifest_file_name = manifest_file_key.split("/")[-1]
                match = re.match(manifest_file_pattern, manifest_file_name)
                if match:
                    matched_keys.append(manifest_file_name)

                ### Query Manifests Control table
                for keys in matched_keys:
                    dataset_name = team + "-" + dataset
                    try:
                        items.append(
                            dynamo_interface.
                            get_item_from_manifests_control_table(
                                dataset_name, keys, input_file_name))
                    except KeyError:
                        logger.info(
                            "Manifest File has not been loaded, sleeping for 5 mins"
                        )
                        manifest_file_loaded = "False"

                ### Update Manifests Control table

                if not items:
                    logger.info(
                        "Manifest File has not been loaded, sleeping for 5 mins"
                    )
                    time.sleep(300)
                    manifest_file_loaded = "False"
                else:
                    ddb_key = {
                        'dataset_name': items[0]['dataset_name'],
                        'datafile_name': items[0]['datafile_name']
                    }
                    STATUS = "STARTED"
                    dynamo_interface.update_manifests_control_table_stagea(
                        ddb_key, STATUS)
                    manifest_file_loaded = "True"
                    event['body']['manifest_ddb_key'] = ddb_key

        ### Check if Manifest threshold has exceeded

        if current_timestamp == manifest_interval:
            current_timestamp = dt.datetime.utcnow().timestamp()

        if int(
            (current_timestamp - manifest_interval) / 60) >= manifest_timeout:
            logger.error("Manifest Threshold Breached")
            raise Exception("Manifest Threshold Breached")

        event['body']['manifest_interval'] = manifest_interval
        event['body']['manifest_file_loaded'] = manifest_file_loaded

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e

    return event
def lambda_handler(event, context):
    """ Process the manifest file and loads into DynamoDB
    
    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    s3_interface = S3Interface()
    stage_bucket = S3Configuration().stage_bucket

    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)

    try:
        logger.info("Fetching event data from previous step")
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        env = event['body']['env']
        bucket = event['body']['bucket']
        manifest_file_key = event['body']['key']
        manifest_file_name = manifest_file_key.split("/")[-1]

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(env).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        ### Download the manifest file to local

        local_path = s3_interface.download_object(bucket, manifest_file_key)

        ### Process the manifest file

        with open(local_path, "r") as raw_file:
            file_names = [
                file_name.strip().split("/")[-1] for file_name in raw_file
            ]

        ### Load data into manifests control table

        for file in file_names:
            item = {
                "dataset_name":
                team + "-" + dataset + "-" + manifest_file_name,
                "datafile_name": manifest_file_name + "-" + file
            }
            dynamo_interface.put_item_in_manifests_control_table(item)

        ### Set s3 path for Copy
        s3_path = 'pre-stage/{}/manifests/{}/{}'.format(
            team, dataset, manifest_file_name)
        kms_key = KMSConfiguration(team).get_kms_arn

        ### Copy Manifest File to team/manifest/dataset location

        s3_interface.copy_object(bucket,
                                 manifest_file_key,
                                 stage_bucket,
                                 s3_path,
                                 kms_key=kms_key)

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)

        processed_keys = [s3_path]

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e

    return processed_keys
Example #14
0
def lambda_handler(event, context):
    """Checks if the file to be processed is  manifest driven 

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with Processed Bucket and Key(s)
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        keys_to_process = event['body']['keysToProcess']
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        manifest_data_timeout = int(
            event['body']['manifest_details']['manifest_data_timeout'])
        current_time = dt.datetime.utcnow()
        current_timestamp = current_time.timestamp()

        if 'manifest_interval' in event['body']:
            manifest_interval = event['body']['manifest_interval']
        else:
            manifest_interval = current_timestamp

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())

        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        ### Set max_items_process in datasets table so that the statemachine only processes 1 manifest file at a time

        ddb_keys = get_ddb_keys(keys_to_process, bucket, team, dataset)

        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        ### Query Manifest Control Table to get the status
        items = []

        logger.info(
            "Querying DynamoDB to check data in manifests control table for Stage A status"
        )

        for ddb_key in ddb_keys:
            try:
                items.append(
                    dynamo_interface.get_item_from_manifests_control_table(
                        ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                        ddb_key["datafile_name"]))
            except KeyError:
                logger.error(
                    "The manifest file has not been processed in Stage A")
                raise Exception(
                    "Manifest File has not been processed in Stage A")

        ### Check stage a status for data files
        logger.info(
            "Checking to see if all the files have been processed in Stage A")

        status_message_list = []
        failed_status_message_list = []
        wait_message_counter = 0
        failed_message_counter = 0

        for item in items:
            if "stage_a_status" in item:
                stage_a_status = item["stage_a_status"]
            else:
                stage_a_status = "NOT STARTED"

            if stage_a_status != "COMPLETED" and stage_a_status != "FAILED":
                status_message_list.append("Waiting for Data File {}".format(
                    item["datafile_name"].split("-")[-1]))
                wait_message_counter += 1

            elif stage_a_status == "FAILED":
                failed_status_message_list.append(
                    "Data Files Failed in Stage A {}".format(
                        item["datafile_name"].split("-")[-1]))
                failed_message_counter += 1

        if failed_message_counter > 0:
            logger.error("Data File Failure in Stage A, Processing will stop")
            logger.error("The following files have failed in Stage A")
            for message in failed_status_message_list:
                logger.error(message)
            ### Update manifest control table, mark all files as failed in Stage B
            for ddb_key in ddb_keys:
                update_key = dynamo_interface.manifest_keys(
                    ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                    ddb_key["datafile_name"])
                dynamo_interface.update_manifests_control_table_stageb(
                    update_key, "FAILED", None, "Datafile Failed in Stage A")
            raise Exception("Data File Failure in Stage A")

        if wait_message_counter > 0:
            logger.info("Waiting for Data Files to be processed in Stage A")
            for message in status_message_list:
                logger.info(message)
            logger.info("Will sleep for 5 mins")
            time.sleep(300)
            data_file_wait = "True"
            if manifest_interval == current_timestamp:
                current_timestamp = dt.datetime.utcnow().timestamp()

            if int((current_timestamp - manifest_interval) /
                   60) >= manifest_data_timeout:
                logger.error("Data File Threshold Breached")
                logger.error("Stage B Processing Will Stop Now")
                data_file_wait = "False"
                for message in status_message_list:
                    logger.error(message)
                ### Update manifest control table, mark all files as failed in Stage B
                for ddb_key in ddb_keys:
                    update_key = dynamo_interface.manifest_keys(
                        ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                        ddb_key["datafile_name"])
                    dynamo_interface.update_manifests_control_table_stageb(
                        update_key, "FAILED", None,
                        "Datafile threshold Breached")
                raise Exception("Data File Threshold Breached")
        else:
            logger.info("All files processed in Stage A")
            data_file_wait = "False"
            for ddb_key in ddb_keys:
                update_key = dynamo_interface.manifest_keys(
                    ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                    ddb_key["datafile_name"])
                dynamo_interface.update_manifests_control_table_stageb(
                    update_key, "STARTED")

        event["body"]["manifest_interval"] = manifest_interval
        event["body"]["data_file_wait"] = data_file_wait

        remove_content_tmp()
        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        remove_content_tmp()
        raise e
    return event
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(
                event['body']['job']['peh_id'])

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'peh_id': event['body']['job']['peh_id'],
                'stage': 'post-stage'
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

        # Add Tables to Result Path to Enable Deequ Job
        table_path = "compile_topics_data_csv"
        tables = [table_path]

        # Only uncomment if using Kendra and index and data source ALREADY created
        # Data Sync Job
        # kendra_client = boto3.client('kendra')
        # response = kendra_client.start_data_source_sync_job(
        #         Id='ENTER_DATASOURCE_ID',
        #         IndexId='ENTER_INDEX_ID''
        #         )

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e
    return tables
import os
import shutil

from datalake_library.commons import init_logger
from datalake_library.transforms.transform_handler import TransformHandler
from datalake_library import octagon
from datalake_library.octagon import Artifact, EventReasonEnum, peh
from datalake_library.configuration.resource_configs import DynamoConfiguration
from datalake_library.interfaces.dynamo_interface import DynamoInterface

logger = init_logger(__name__)
dynamo_config = DynamoConfiguration()
dynamo_interface = DynamoInterface(dynamo_config)


def remove_content_tmp():
    # Remove contents of the Lambda /tmp folder (Not released by default)
    for root, dirs, files in os.walk('/tmp'):
        for f in files:
            os.unlink(os.path.join(root, f))
        for d in dirs:
            shutil.rmtree(os.path.join(root, d))


def lambda_handler(event, context):
    """Calls custom transform developed by user

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context
Example #17
0
def lambda_handler(event, context):
    """Calls custom job waiter developed by user

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with Processed Bucket, Key(s) and Job Details
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        keys_to_process = event['body']['keysToProcess']
        team = event['body']['team']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        job_details = event['body']['job']['jobDetails']
        processed_keys_path = event['body']['job']['processedKeysPath']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        logger.info('Querying manifests control table ')

        items = get_manifest_data(bucket, team, dataset, keys_to_process[0])

        ddb_keys = get_ddb_keys(items)

        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Checking Job Status with user custom code')
        transform_handler = TransformHandler().stage_transform(
            team, dataset, stage)
        response = transform_handler().check_job_status(
            bucket, keys_to_process, processed_keys_path,
            job_details)  # custom user code called
        response['peh_id'] = event['body']['job']['peh_id']

        if event['body']['job']['jobDetails']['jobStatus'] == 'FAILED':
            peh.PipelineExecutionHistoryAPI(
                octagon_client).retrieve_pipeline_execution(response['peh_id'])
            octagon_client.end_pipeline_execution_failed(
                component=component,
                issue_comment="{} {} Error: Check Job Logs".format(
                    stage, component))
            for ddb_key in ddb_keys:
                dynamo_interface.update_manifests_control_table_stageb(
                    ddb_key, "FAILED", None, "Glue Job Failed, Check Logs")

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(
                event['body']['job']['peh_id'])
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "FAILED", None, "Glue Job Failed, Check Logs")
        raise e
    return response
Example #18
0
def lambda_handler(event, context):
    """Checks if any items need processing and triggers state machine
    Arguments:
        event {dict} -- Dictionary with no relevant details
        context {dict} -- Dictionary with details on Lambda context 
    """

    # TODO Implement Redrive Logic (through message_group_id)
    try:
        team = event['team']
        pipeline = event['pipeline']
        stage = event['pipeline_stage']
        dataset = event['dataset']
        org = event['org']
        app = event['app']
        env = event['env']
        stage_bucket = S3Configuration().stage_bucket
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)
        transform_info = dynamo_interface.get_transform_table_item(
            '{}-{}'.format(team, dataset))
        MIN_ITEMS_TO_PROCESS = int(
            transform_info['min_items_process']['stage_{}'.format(
                stage[-1].lower())])
        MAX_ITEMS_TO_PROCESS = int(
            transform_info['max_items_process']['stage_{}'.format(
                stage[-1].lower())])
        sqs_config = SQSConfiguration(team, dataset, stage)
        queue_interface = SQSInterface(sqs_config.get_stage_queue_name)
        keys_to_process = []

        logger.info('Querying {}-{} objects waiting for processing'.format(
            team, dataset))
        keys_to_process = queue_interface.receive_min_max_messages(
            MIN_ITEMS_TO_PROCESS, MAX_ITEMS_TO_PROCESS)
        # If no keys to process, break
        if not keys_to_process:
            return

        logger.info('{} Objects ready for processing'.format(
            len(keys_to_process)))
        keys_to_process = list(set(keys_to_process))

        response = {
            'statusCode': 200,
            'body': {
                "bucket": stage_bucket,
                "keysToProcess": keys_to_process,
                "team": team,
                "pipeline": pipeline,
                "pipeline_stage": stage,
                "dataset": dataset,
                "org": org,
                "app": app,
                "env": env
            }
        }
        logger.info('Starting State Machine Execution')
        state_config = StateMachineConfiguration(team, pipeline, stage)
        StatesInterface().run_state_machine(
            state_config.get_stage_state_machine_arn, response)
    except Exception as e:
        # If failure send to DLQ
        if keys_to_process:
            dlq_interface = SQSInterface(sqs_config.get_stage_dlq_name)
            dlq_interface.send_message_to_fifo_queue(json.dumps(response),
                                                     'failed')
        logger.error("Fatal error", exc_info=True)
        raise e
    return