Example #1
0
def get_manifest_data(bucket, team, dataset, manifest_key):
    """ Returns a list of items from manifests control table """
    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)
    s3_interface = S3Interface()
    local_path = s3_interface.download_object(bucket, manifest_key)
    ddb_keys = []
    items = []
    with open(local_path, "r") as raw_file:
        file_names = [
            file_name.strip().split("/")[-1] for file_name in raw_file
        ]
        for file in file_names:
            ddb_keys.append({
                "dataset_name": team + "-" + dataset,
                "manifest_file_name": manifest_key.split("/")[-1],
                "datafile_name": file
            })
    for ddb_key in ddb_keys:
        try:
            items.append(
                dynamo_interface.get_item_from_manifests_control_table(
                    ddb_key["dataset_name"], ddb_key["manifest_file_name"],
                    ddb_key["datafile_name"]))
        except KeyError:
            logger.error("The manifest file has not been processed in Stage A")
            raise Exception("Manifest File has not been processed in Stage A")

    return items
Example #2
0
def get_ddb_keys(keys_to_process, bucket, team, dataset):
    ### Returns a list of DynamoDB keys for Querying
    ddb_keys = []
    for key in keys_to_process:
        s3_interface = S3Interface()
        local_path = s3_interface.download_object(bucket, key)
        with open(local_path, "r") as raw_file:
            file_names = [
                file_name.strip().split("/")[-1] for file_name in raw_file
            ]
            for file in file_names:
                ddb_keys.append({
                    "dataset_name": team + "-" + dataset,
                    "manifest_file_name": key.split("/")[-1],
                    "datafile_name": file
                })
    return ddb_keys
Example #3
0
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['job']['peh_id']
        keys_to_process = event['body']['keysToProcess']
        s3_path = "post-stage/{}/manifests/{}/{}".format(
            team, dataset, keys_to_process[0].split("/")[-1])

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

        logger.info("Updating manifests control table")
        items = get_manifest_data(bucket, team, dataset, keys_to_process[0])
        ddb_keys = get_ddb_keys(items)

        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "COMPLETED")

        logger.info("Move manifest file to post stage")
        kms_key = KMSConfiguration(team).get_kms_arn
        s3_interface = S3Interface()
        s3_interface.copy_object(bucket,
                                 keys_to_process[0],
                                 bucket,
                                 s3_path,
                                 kms_key=kms_key)

        logger.info("Removing manifest file from pre-stage")

        s3_interface.delete_objects(bucket, keys_to_process[0])

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        for ddb_key in ddb_keys:
            dynamo_interface.update_manifests_control_table_stageb(
                ddb_key, "FAILED", None, "Failed in Post Update")
        raise e
    return 200
import boto3
import time
import sys
import logging
import traceback
import string
import random
#######################################################
# Use S3 Interface to interact with S3 objects
# For example to download/upload them
#######################################################
from datalake_library.commons import init_logger
from datalake_library.configuration.resource_configs import S3Configuration, KMSConfiguration
from datalake_library.interfaces.s3_interface import S3Interface

s3_interface = S3Interface()
# IMPORTANT: Stage bucket where transformed data must be uploaded
stage_bucket = S3Configuration().stage_bucket
athena_client = boto3.client('athena')
glue_client = boto3.client('glue')
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)


class CustomTransform():
    def __init__(self):
        logger.info("Athena Light Transform initiated")

    def transform_object(self, bucket, body, team, dataset):

        # returns table path, or table path with partition name
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    try:
        logger.info('Fetching event data from previous step')
        processed_keys = event['body']['processedKeys']
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        bucket = S3Configuration().stage_bucket
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }

            dynamo_interface.update_object_metadata_catalog(object_metadata)

        #Workload management changes
        #---------------------------
        wlm_ddb_table = dynamo_interface.wlm_control_table
        item = dynamo_interface.get_item(
            wlm_ddb_table, {
                "name":
                "{}-{}-{}".format(team, dataset,
                                  processed_keys[0].split("/")[-2])
            })
        priority = item.get('priority', None)
        print(priority)
        #---------------------------

        logger.info('Sending messages to next SQS queue if it exists')
        sqs_config = SQSConfiguration(team, dataset, ''.join(
            [stage[:-1], chr(ord(stage[-1]) + 1)]),
                                      priority)  #Workload management changes
        sqs_interface = SQSInterface(
            sqs_config.get_stage_queue_name_wlm)  #Workload management changes
        sqs_interface.send_batch_messages_to_fifo_queue(
            processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e
    return 200
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    def replace_decimals(obj):
        if isinstance(obj, list):
            for i in range(len(obj)):
                obj[i] = replace_decimals(obj[i])
            return obj
        elif isinstance(obj, dict):
            for k, v in obj.items():
                obj[k] = replace_decimals(v)
            return obj
        elif isinstance(obj, set):
            return set(replace_decimals(i) for i in obj)
        elif isinstance(obj, decimal.Decimal):
            if obj % 1 == 0:
                return int(obj)
            else:
                return float(obj)
        else:
            return obj

    def get_table_partitions(db, tbl):
        glue_response = glue_client.get_table(DatabaseName=db, Name=tbl)
        logger.debug('Glue get_table response: {}'.format(glue_response))
        return glue_response['Table']['PartitionKeys']

    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset1 = event['body']['dataset']
        peh_id = event['body']['job']['peh_id']
        env = event['body']['env']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info(
            'Storing metadata to DynamoDB and tagging resulting S3 Objects')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'size': S3Interface().get_size(bucket, key),
                'last_modified_date':
                S3Interface().get_last_modified(bucket, key),
                'org': event['body']['org'],
                'app': event['body']['app'],
                'env': event['body']['env'],
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset1,
                'stage': 'stage',
                'pipeline_stage': stage,
                'peh_id': peh_id
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

            tag_keys = ['org', 'app', 'env', 'team', 'dataset']
            tag_dict = {key: object_metadata[key] for key in tag_keys}
            S3Interface().tag_object(bucket, key, tag_dict)

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))
        prestage_table = event['body']['dest_table']['name']
        prestage_db = event['body']['dest_db']
        dest_part_name = event['body']['dest_table']['part_name']
        dest_part_value = event['body']['dest_table']['part_value']
        processOutput = {}
        if dest_part_name is not '' and dest_part_value is not '':
            partitions = []
            part_dict = {"name": dest_part_name, "value": dest_part_value}
            partitions.append(part_dict)
            processOutput['partitions'] = partitions
        processOutput['processed_keys'] = processed_keys
        ssmresponse = ssmcli.get_parameter(
            Name=f'/SDLF/DDB/{team}/{pipeline}/DependenciesByTable')
        ddb_dependencies_by_table = ssmresponse['Parameter']['Value']
        ddb_table = dynamodb.Table(ddb_dependencies_by_table)
        ssmresponse = ssmcli.get_parameter(
            Name=f'/SDLF/DDB/{team}/{pipeline}/Dependencies')
        ddb_dependencies = ssmresponse['Parameter']['Value']
        consulta = f'{prestage_db.lower()}.{prestage_table.lower()}'
        logger.info(consulta)
        response = ddb_table.get_item(Key={'table_name': consulta})
        logger.info(f'Response {response}')
        if 'Item' in response:
            list_transforms = response['Item']['list_transforms']
            num_of_transforms = len(list_transforms)
            logger.debug(f'Response {response}')
            logger.info(f'This table triggers {num_of_transforms} datasets')
            next_stage = 'B'
            stage_b_message = {}
            for dataset in list_transforms:
                ddb_steps = dynamodb.Table(ddb_dependencies)
                logger.info(dataset)
                response = ddb_steps.get_item(Key={'dataset': dataset})
                logger.info(f'Response {response}')
                num_of_transforms = len(list_transforms)
                item = response['Item']
                dest_table = item['dataset'].split('.')[1]
                dest_db = item['dataset'].split('.')[0]
                dependencies = item['dependencies']
                date_substitutions = replace_decimals(
                    item.get('date_substitutions', []))
                logger.info(f'Dependencies: {dependencies}')
                partition = item.get('partitionColumn', '')
                partition_mask = item.get('partitionPythonMask', None)
                partition_value_formatted = None
                table_check = []
                for table in dependencies:
                    table_name = table['TableName'].split('.')[1]
                    table_db = table['TableName'].split('.')[0]
                    table_partition = table.get('FieldColumn', '')
                    table_partition_format = table.get('DateExpression', None)
                    relativedelta_attributes = replace_decimals(
                        table.get('relativedelta_attributes', None))
                    table_partitions = processOutput.get('partitions', [])
                    usage = table.get('Usage', 'validate').lower()
                    if usage == 'validate':
                        if prestage_db == table_db and prestage_table == table_name:
                            logger.info(
                                f'This table does not update/overwrite {dataset} dataset'
                            )
                            break
                        else:
                            logger.debug(
                                f'Table {table_db}.{table_name} is not the trigger table'
                            )
                    else:
                        if prestage_db.lower() == table_db.lower(
                        ) and prestage_table.lower() == table_name.lower():
                            # dst_tbl_partitions = get_table_partitions(prestage_db,prestage_table)
                            partition_value_formatted = ''
                            # If dest table has partitions and source table has partitions
                            logger.debug(
                                f'Partition: {partition}, table_partitions: {table_partitions}'
                            )
                            if table_partitions and table_partition_format is not None:
                                table_partition_value = table_partitions[0][
                                    'value']
                                value = datetime.strptime(
                                    table_partition_value,
                                    table_partition_format)
                                target_value = value - relativedelta(
                                    **relativedelta_attributes)
                                partition_value_formatted = target_value.strftime(
                                    partition_mask)
                                logger.info(
                                    f'This table {usage.upper()} dataset {dest_table} '
                                    f' Partition {partition} = {partition_value_formatted}'
                                )
                                # validate(table_db, table_name, table_partitions)
                            stage_b_message[
                                'prev_stage_processed_keys'] = processed_keys
                            stage_b_message['team'] = team
                            stage_b_message['pipeline'] = pipeline
                            stage_b_message['pipeline_stage'] = ''.join(
                                [stage[:-1], next_stage])
                            stage_b_message['dataset'] = dataset1
                            stage_b_message['org'] = event['body']['org']
                            stage_b_message['app'] = event['body']['app']
                            stage_b_message['env'] = event['body']['env']
                            stage_b_message['behaviour'] = table[
                                'Usage'].lower()
                            stage_b_message['dest_db'] = dest_db
                            stage_b_message['dest_table'] = {}
                            stage_b_message['dest_table']['name'] = dest_table
                            stage_b_message['dest_table'][
                                'part_name'] = partition
                            stage_b_message['dest_table'][
                                'part_value'] = partition_value_formatted
                            stage_b_message['steps'] = item['steps']
                            stage_b_message[
                                'date_substitutions'] = date_substitutions
                            logger.info(
                                'Sending messages to next SQS queue if it exists'
                            )
                            # GEt queue by SSM
                            logger.info(stage_b_message)
                            sqs_config = SQSConfiguration(
                                team, pipeline, stage)
                            sqs_interface = SQSInterface(
                                sqs_config.get_stage_queue_name)
                            sqs_interface.send_message_to_fifo_queue(
                                json.dumps(stage_b_message),
                                '{}-{}'.format(team, pipeline))
                            break

        else:
            logger.info(f'This table triggers 0 datasets')

        octagon_client.update_pipeline_execution(
            status=f'{stage} {component} Processing', component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment=f'{stage} {component} Error: {repr(e)}')
        raise e
    return 200
Example #7
0
def lambda_handler(event, context):
    """ Load Datafile metadata in manifests control table
        Check if manifest file is available within the threshold
    
    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    s3_interface = S3Interface()
    stage_bucket = S3Configuration().stage_bucket

    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)
    current_time = dt.datetime.utcnow()
    current_timestamp = current_time.timestamp()

    try:
        logger.info("Fetching event data from previous step")
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        env = event['body']['env']
        bucket = event['body']['bucket']
        input_file_key = event['body']['key']
        input_file_name = input_file_key.split("/")[-1]
        manifest_file_pattern = event['body']['manifest_details'][
            'regex_pattern']
        manifest_timeout = int(
            event['body']['manifest_details']['manifest_timeout'])

        if 'manifest_interval' in event['body']:
            manifest_interval = event['body']['manifest_interval']
        else:
            manifest_interval = current_timestamp

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(env).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)

        ### List S3 Objects for the manifest file in the manifest prefix
        ### For this to work the manifest should have been loaded into DynamoDB

        manifest_key = "pre-stage/{}/manifests/{}/".format(team, dataset)
        processed_manifest_keys = s3_interface.list_objects(
            stage_bucket, manifest_key)

        matched_keys = []
        items = []

        if not processed_manifest_keys:
            logger.info(
                "Manifest File has not been loaded, sleeping for 5 mins")
            time.sleep(300)
            manifest_file_loaded = "False"

        else:
            for manifest_file_key in processed_manifest_keys:
                manifest_file_name = manifest_file_key.split("/")[-1]
                match = re.match(manifest_file_pattern, manifest_file_name)
                if match:
                    matched_keys.append(manifest_file_name)

                ### Query Manifests Control table
                for keys in matched_keys:
                    dataset_name = team + "-" + dataset
                    try:
                        items.append(
                            dynamo_interface.
                            get_item_from_manifests_control_table(
                                dataset_name, keys, input_file_name))
                    except KeyError:
                        logger.info(
                            "Manifest File has not been loaded, sleeping for 5 mins"
                        )
                        manifest_file_loaded = "False"

                ### Update Manifests Control table

                if not items:
                    logger.info(
                        "Manifest File has not been loaded, sleeping for 5 mins"
                    )
                    time.sleep(300)
                    manifest_file_loaded = "False"
                else:
                    ddb_key = {
                        'dataset_name': items[0]['dataset_name'],
                        'datafile_name': items[0]['datafile_name']
                    }
                    STATUS = "STARTED"
                    dynamo_interface.update_manifests_control_table_stagea(
                        ddb_key, STATUS)
                    manifest_file_loaded = "True"
                    event['body']['manifest_ddb_key'] = ddb_key

        ### Check if Manifest threshold has exceeded

        if current_timestamp == manifest_interval:
            current_timestamp = dt.datetime.utcnow().timestamp()

        if int(
            (current_timestamp - manifest_interval) / 60) >= manifest_timeout:
            logger.error("Manifest Threshold Breached")
            raise Exception("Manifest Threshold Breached")

        event['body']['manifest_interval'] = manifest_interval
        event['body']['manifest_file_loaded'] = manifest_file_loaded

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e

    return event
def lambda_handler(event, context):
    """ Process the manifest file and loads into DynamoDB
    
    Arguments:
        event {dict} -- Dictionary with details on previous processing step
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with outcome of the process
    """
    s3_interface = S3Interface()
    stage_bucket = S3Configuration().stage_bucket

    dynamo_config = DynamoConfiguration()
    dynamo_interface = DynamoInterface(dynamo_config)

    try:
        logger.info("Fetching event data from previous step")
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']
        peh_id = event['body']['peh_id']
        env = event['body']['env']
        bucket = event['body']['bucket']
        manifest_file_key = event['body']['key']
        manifest_file_name = manifest_file_key.split("/")[-1]

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(env).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(peh_id)

        ### Download the manifest file to local

        local_path = s3_interface.download_object(bucket, manifest_file_key)

        ### Process the manifest file

        with open(local_path, "r") as raw_file:
            file_names = [
                file_name.strip().split("/")[-1] for file_name in raw_file
            ]

        ### Load data into manifests control table

        for file in file_names:
            item = {
                "dataset_name":
                team + "-" + dataset + "-" + manifest_file_name,
                "datafile_name": manifest_file_name + "-" + file
            }
            dynamo_interface.put_item_in_manifests_control_table(item)

        ### Set s3 path for Copy
        s3_path = 'pre-stage/{}/manifests/{}/{}'.format(
            team, dataset, manifest_file_name)
        kms_key = KMSConfiguration(team).get_kms_arn

        ### Copy Manifest File to team/manifest/dataset location

        s3_interface.copy_object(bucket,
                                 manifest_file_key,
                                 stage_bucket,
                                 s3_path,
                                 kms_key=kms_key)

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)

        processed_keys = [s3_path]

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e

    return processed_keys
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']

        logger.info('Initializing Octagon client')
        component = context.function_name.split('-')[-2].title()
        octagon_client = (octagon.OctagonClient().with_run_lambda(
            True).with_configuration_instance(event['body']['env']).build())
        peh.PipelineExecutionHistoryAPI(
            octagon_client).retrieve_pipeline_execution(
                event['body']['job']['peh_id'])

        logger.info('Initializing DynamoDB config and Interface')
        dynamo_config = DynamoConfiguration()
        dynamo_interface = DynamoInterface(dynamo_config)

        logger.info('Storing metadata to DynamoDB')
        for key in processed_keys:
            object_metadata = {
                'bucket': bucket,
                'key': key,
                'team': team,
                'pipeline': pipeline,
                'dataset': dataset,
                'peh_id': event['body']['job']['peh_id'],
                'stage': 'post-stage'
            }
            dynamo_interface.update_object_metadata_catalog(object_metadata)

        # Add Tables to Result Path to Enable Deequ Job
        table_path = "compile_topics_data_csv"
        tables = [table_path]

        # Only uncomment if using Kendra and index and data source ALREADY created
        # Data Sync Job
        # kendra_client = boto3.client('kendra')
        # response = kendra_client.start_data_source_sync_job(
        #         Id='ENTER_DATASOURCE_ID',
        #         IndexId='ENTER_INDEX_ID''
        #         )

        # Only uncomment if a queue for the next stage exists
        # logger.info('Sending messages to next SQS queue if it exists')
        # sqs_config = SQSConfiguration(team, dataset, ''.join([stage[:-1], chr(ord(stage[-1]) + 1)]))
        # sqs_interface = SQSInterface(sqs_config.get_stage_queue_name)
        # sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset))

        octagon_client.update_pipeline_execution(
            status="{} {} Processing".format(stage, component),
            component=component)
        octagon_client.end_pipeline_execution_success()
    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        octagon_client.end_pipeline_execution_failed(
            component=component,
            issue_comment="{} {} Error: {}".format(stage, component, repr(e)))
        raise e
    return tables
Example #10
0
def lambda_handler(event, context):
    """Updates the S3 objects metadata catalog

    Arguments:
        event {dict} -- Dictionary with details on Bucket and Keys
        context {dict} -- Dictionary with details on Lambda context

    Returns:
        {dict} -- Dictionary with response
    """
    try:
        logger.info('Fetching event data from previous step')
        bucket = event['body']['bucket']
        processed_keys_path = event['body']['job']['processedKeysPath']
        processed_keys = S3Interface().list_objects(bucket,
                                                    processed_keys_path)
        team = event['body']['team']
        pipeline = event['body']['pipeline']
        stage = event['body']['pipeline_stage']
        dataset = event['body']['dataset']

        # Lastly, Lets Run Comprehend Multi-Label Classification Job
        # with the Training Data we created earlier:

        # Connect to Comprehend Client
        comprehend_client = boto3.client('comprehend')

        # Set Parameters for Classifier Training Job and get KMS Key for Encryption
        input_key = "post-stage/{}/{}/multilabel_classification/training_data.csv".format(
            team, dataset)
        s3_input = "s3://{}/{}".format(bucket, input_key)
        output_key = "post-stage/{}/{}/multilabel_classification/".format(
            team, dataset)
        s3_output = "s3://{}/{}".format(bucket, output_key)

        kms_key = KMSConfiguration(team).get_kms_arn
        name = "MedicalResearchTopicClassifier"
        aws_account_id = context.invoked_function_arn.split(":")[4]
        data_access_role = 'arn:aws:iam::{}:role/sdlf-{}-{}-create-classifier-b'.format(
            aws_account_id, team, pipeline)

        # Call Multi-Label Classifier Training to Start
        response = comprehend_client.create_document_classifier(
            DocumentClassifierName=name,
            DataAccessRoleArn=data_access_role,
            Tags=[
                {
                    'Key': 'Framework',
                    'Value': 'sdlf'
                },
            ],
            InputDataConfig={
                'S3Uri': s3_input,
                'LabelDelimiter': '|'
            },
            OutputDataConfig={
                'S3Uri': s3_output,
                'KmsKeyId': kms_key
            },
            LanguageCode='en',
            VolumeKmsKeyId=kms_key,
            Mode='MULTI_LABEL')

    except Exception as e:
        logger.error("Fatal error", exc_info=True)
        raise e
    return 200