Example #1
0
    def __init__(self, device=None, jit=False):
        self.device = device
        self.jit = jit
        self.module = model_wrapper.Model(device)
        if jit:
            self.module = torch.jit.script(self.module)

        self.args = args = Namespace(
            **{
                'dataset_root': 'dataset',
                'train_batch_size': 6,
                'init_learning_rate': 0.0001,
            })

        self.optimizer = optim.Adam(self.module.parameters(),
                                    lr=args.init_learning_rate)

        mean = [0.429, 0.431, 0.397]
        std = [1, 1, 1]
        normalize = transforms.Normalize(mean=mean, std=std)
        transform = transforms.Compose([transforms.ToTensor(), normalize])

        trainset = dataloader.SuperSloMo(root=args.dataset_root + '/train',
                                         transform=transform,
                                         train=True)
        trainloader = torch.utils.data.DataLoader(
            trainset, batch_size=args.train_batch_size, shuffle=False)

        trainData, trainFrameIndex = next(iter(trainloader))
        frame0, frameT, frame1 = trainData
        trainData = (frame0.to(device), frameT.to(device), frame1.to(device))
        self.example_inputs = trainFrameIndex, *trainData
Example #2
0
trainFlowBackWarp = model.backWarp(352, 352, device)
trainFlowBackWarp = trainFlowBackWarp.to(device)
validationFlowBackWarp = model.backWarp(640, 352, device)
validationFlowBackWarp = validationFlowBackWarp.to(device)

###Load Datasets

# Channel wise mean calculated on adobe240-fps training dataset
mean = [0.429, 0.431, 0.397]
std = [1, 1, 1]
normalize = transforms.Normalize(mean=mean, std=std)
transform = transforms.Compose([transforms.ToTensor(), normalize])

trainset = dataloader.SuperSloMo(root=args.dataset_root + '/train',
                                 transform=transform,
                                 train=True)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=args.train_batch_size,
                                          shuffle=True)

validationset = dataloader.SuperSloMo(root=args.dataset_root + '/validation',
                                      transform=transform,
                                      randomCropSize=(640, 352),
                                      train=False)
validationloader = torch.utils.data.DataLoader(
    validationset, batch_size=args.validation_batch_size, shuffle=False)

print(trainset, validationset)

###Create transform to display image from tensor
Example #3
0
def train():
    global writer
    # For parsing commandline arguments
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset_root",
        type=str,
        required=True,
        help='path to dataset folder containing train-test-validation folders')
    parser.add_argument("--checkpoint_dir",
                        type=str,
                        required=True,
                        help='path to folder for saving checkpoints')
    parser.add_argument("--checkpoint",
                        type=str,
                        help='path of checkpoint for pretrained model')
    parser.add_argument(
        "--train_continue",
        type=bool,
        default=False,
        help=
        'If resuming from checkpoint, set to True and set `checkpoint` path. Default: False.'
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=200,
                        help='number of epochs to train. Default: 200.')
    parser.add_argument("--train_batch_size",
                        type=int,
                        default=3,
                        help='batch size for training. Default: 6.')
    parser.add_argument("--validation_batch_size",
                        type=int,
                        default=6,
                        help='batch size for validation. Default: 10.')
    parser.add_argument("--init_learning_rate",
                        type=float,
                        default=0.0001,
                        help='set initial learning rate. Default: 0.0001.')
    parser.add_argument(
        "--milestones",
        type=list,
        default=[25, 50],
        help=
        'UNUSED NOW: Set to epoch values where you want to decrease learning rate by a factor of 0.1. Default: [100, 150]'
    )
    parser.add_argument(
        "--progress_iter",
        type=int,
        default=200,
        help=
        'frequency of reporting progress and validation. N: after every N iterations. Default: 100.'
    )
    parser.add_argument(
        "--checkpoint_epoch",
        type=int,
        default=5,
        help=
        'checkpoint saving frequency. N: after every N epochs. Each checkpoint is roughly of size 151 MB.Default: 5.'
    )
    args = parser.parse_args()

    ##[TensorboardX](https://github.com/lanpa/tensorboardX)
    ### For visualizing loss and interpolated frames

    ###Initialize flow computation and arbitrary-time flow interpolation CNNs.

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(device)
    flowComp = model.UNet(6, 4)
    flowComp.to(device)
    ArbTimeFlowIntrp = model.UNet(20, 5)
    ArbTimeFlowIntrp.to(device)

    ###Initialze backward warpers for train and validation datasets

    train_W_dim = 352
    train_H_dim = 352

    trainFlowBackWarp = model.backWarp(train_W_dim, train_H_dim, device)
    trainFlowBackWarp = trainFlowBackWarp.to(device)
    validationFlowBackWarp = model.backWarp(train_W_dim * 2, train_H_dim,
                                            device)
    validationFlowBackWarp = validationFlowBackWarp.to(device)

    ###Load Datasets

    # Channel wise mean calculated on custom training dataset
    # mean = [0.43702903766008444, 0.43715053433990597, 0.40436416782660994]
    mean = [0.5] * 3
    std = [1, 1, 1]
    normalize = transforms.Normalize(mean=mean, std=std)
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    trainset = dataloader.SuperSloMo(root=args.dataset_root + '/train',
                                     randomCropSize=(train_W_dim, train_H_dim),
                                     transform=transform,
                                     train=True)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=args.train_batch_size,
                                              shuffle=True,
                                              num_workers=2,
                                              pin_memory=True)

    validationset = dataloader.SuperSloMo(
        root=args.dataset_root + '/validation',
        transform=transform,
        randomCropSize=(2 * train_W_dim, train_H_dim),
        train=False)
    validationloader = torch.utils.data.DataLoader(
        validationset,
        batch_size=args.validation_batch_size,
        shuffle=False,
        num_workers=2,
        pin_memory=True)

    print(trainset, validationset)

    ###Create transform to display image from tensor

    negmean = [x * -1 for x in mean]
    revNormalize = transforms.Normalize(mean=negmean, std=std)
    TP = transforms.Compose([revNormalize, transforms.ToPILImage()])

    ###Utils

    def get_lr(optimizer):
        for param_group in optimizer.param_groups:
            return param_group['lr']

    ###Loss and Optimizer

    L1_lossFn = nn.L1Loss()
    MSE_LossFn = nn.MSELoss()

    if args.train_continue:
        dict1 = torch.load(args.checkpoint)
        last_epoch = dict1['epoch'] * len(trainloader)
    else:
        last_epoch = -1

    params = list(ArbTimeFlowIntrp.parameters()) + list(flowComp.parameters())

    optimizer = AdamW(params, lr=args.init_learning_rate, amsgrad=True)
    # optimizer = optim.SGD(params, lr=args.init_learning_rate, momentum=0.9, nesterov=True)

    # scheduler to decrease learning rate by a factor of 10 at milestones.
    # Patience suggested value:
    # patience = number of item in train dataset / train_batch_size * (Number of epochs patience)
    # It does say epoch, but in this case, the number of progress iterations is what's really being worked with.
    # As such, each epoch will be given by the above formula (roughly, if using a rough dataset count)
    # If the model seems to equalize fast, reduce the number of epochs accordingly.

    # scheduler = optim.lr_scheduler.CyclicLR(optimizer,
    #                                         base_lr=1e-8,
    #                                         max_lr=9.0e-3,
    #                                         step_size_up=3500,
    #                                         mode='triangular2',
    #                                         cycle_momentum=False,
    #                                         last_epoch=last_epoch)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='min',
        factor=0.1,
        patience=len(trainloader) * 3,
        cooldown=len(trainloader) * 2,
        verbose=True,
        min_lr=1e-8)

    # Changed to use this to ensure a more adaptive model.
    # The changed model used here seems to converge or plateau faster with more rapid swings over time.
    # As such letting the model deal with stagnation more proactively than at a set stage seems more useful.

    ###Initializing VGG16 model for perceptual loss

    vgg16 = torchvision.models.vgg16(pretrained=True)
    vgg16_conv_4_3 = nn.Sequential(*list(vgg16.children())[0][:22])
    vgg16_conv_4_3.to(device)

    for param in vgg16_conv_4_3.parameters():
        param.requires_grad = False

    # Validation function

    def validate():
        # For details see training.
        psnr = 0
        tloss = 0
        flag = 1
        with torch.no_grad():
            for validationIndex, (validationData,
                                  validationFrameIndex) in enumerate(
                                      validationloader, 0):
                frame0, frameT, frame1 = validationData

                I0 = frame0.to(device)
                I1 = frame1.to(device)
                IFrame = frameT.to(device)

                torch.cuda.empty_cache()
                flowOut = flowComp(torch.cat((I0, I1), dim=1))
                F_0_1 = flowOut[:, :2, :, :]
                F_1_0 = flowOut[:, 2:, :, :]

                fCoeff = model.getFlowCoeff(validationFrameIndex, device)
                torch.cuda.empty_cache()
                F_t_0 = fCoeff[0] * F_0_1 + fCoeff[1] * F_1_0
                F_t_1 = fCoeff[2] * F_0_1 + fCoeff[3] * F_1_0

                g_I0_F_t_0 = validationFlowBackWarp(I0, F_t_0)
                g_I1_F_t_1 = validationFlowBackWarp(I1, F_t_1)
                torch.cuda.empty_cache()
                intrpOut = ArbTimeFlowIntrp(
                    torch.cat((I0, I1, F_0_1, F_1_0, F_t_1, F_t_0, g_I1_F_t_1,
                               g_I0_F_t_0),
                              dim=1))

                F_t_0_f = intrpOut[:, :2, :, :] + F_t_0
                F_t_1_f = intrpOut[:, 2:4, :, :] + F_t_1
                V_t_0 = torch.sigmoid(intrpOut[:, 4:5, :, :])
                V_t_1 = 1 - V_t_0
                # torch.cuda.empty_cache()
                g_I0_F_t_0_f = validationFlowBackWarp(I0, F_t_0_f)
                g_I1_F_t_1_f = validationFlowBackWarp(I1, F_t_1_f)

                wCoeff = model.getWarpCoeff(validationFrameIndex, device)
                torch.cuda.empty_cache()
                Ft_p = (wCoeff[0] * V_t_0 * g_I0_F_t_0_f + wCoeff[1] * V_t_1 *
                        g_I1_F_t_1_f) / (wCoeff[0] * V_t_0 + wCoeff[1] * V_t_1)

                # For tensorboard
                if (flag):
                    retImg = torchvision.utils.make_grid([
                        revNormalize(frame0[0]),
                        revNormalize(frameT[0]),
                        revNormalize(Ft_p.cpu()[0]),
                        revNormalize(frame1[0])
                    ],
                                                         padding=10)
                    flag = 0

                # loss
                recnLoss = L1_lossFn(Ft_p, IFrame)
                # torch.cuda.empty_cache()
                prcpLoss = MSE_LossFn(vgg16_conv_4_3(Ft_p),
                                      vgg16_conv_4_3(IFrame))

                warpLoss = L1_lossFn(g_I0_F_t_0, IFrame) + L1_lossFn(
                    g_I1_F_t_1, IFrame) + L1_lossFn(
                        validationFlowBackWarp(I0, F_1_0), I1) + L1_lossFn(
                            validationFlowBackWarp(I1, F_0_1), I0)
                torch.cuda.empty_cache()
                loss_smooth_1_0 = torch.mean(
                    torch.abs(F_1_0[:, :, :, :-1] -
                              F_1_0[:, :, :, 1:])) + torch.mean(
                                  torch.abs(F_1_0[:, :, :-1, :] -
                                            F_1_0[:, :, 1:, :]))
                loss_smooth_0_1 = torch.mean(
                    torch.abs(F_0_1[:, :, :, :-1] -
                              F_0_1[:, :, :, 1:])) + torch.mean(
                                  torch.abs(F_0_1[:, :, :-1, :] -
                                            F_0_1[:, :, 1:, :]))
                loss_smooth = loss_smooth_1_0 + loss_smooth_0_1

                # torch.cuda.empty_cache()
                loss = 204 * recnLoss + 102 * warpLoss + 0.005 * prcpLoss + loss_smooth
                tloss += loss.item()

                # psnr
                MSE_val = MSE_LossFn(Ft_p, IFrame)
                psnr += (10 * log10(1 / MSE_val.item()))
                torch.cuda.empty_cache()

        return (psnr / len(validationloader)), (tloss /
                                                len(validationloader)), retImg

    ### Initialization

    if args.train_continue:
        ArbTimeFlowIntrp.load_state_dict(dict1['state_dictAT'])
        flowComp.load_state_dict(dict1['state_dictFC'])

        optimizer.load_state_dict(dict1.get('state_optimizer', {}))
        scheduler.load_state_dict(dict1.get('state_scheduler', {}))

        for param_group in optimizer.param_groups:
            param_group['lr'] = dict1.get('learningRate',
                                          args.init_learning_rate)

    else:
        dict1 = {'loss': [], 'valLoss': [], 'valPSNR': [], 'epoch': -1}

    ### Training

    import time

    start = time.time()
    cLoss = dict1['loss']
    valLoss = dict1['valLoss']
    valPSNR = dict1['valPSNR']
    checkpoint_counter = 0

    ### Main training loop

    optimizer.step()

    for epoch in range(dict1['epoch'] + 1, args.epochs):
        print("Epoch: ", epoch)

        # Append and reset
        cLoss.append([])
        valLoss.append([])
        valPSNR.append([])
        iLoss = 0

        for trainIndex, (trainData,
                         trainFrameIndex) in enumerate(trainloader, 0):

            ## Getting the input and the target from the training set
            frame0, frameT, frame1 = trainData

            I0 = frame0.to(device)
            I1 = frame1.to(device)
            IFrame = frameT.to(device)
            optimizer.zero_grad()
            # torch.cuda.empty_cache()
            # Calculate flow between reference frames I0 and I1
            flowOut = flowComp(torch.cat((I0, I1), dim=1))

            # Extracting flows between I0 and I1 - F_0_1 and F_1_0
            F_0_1 = flowOut[:, :2, :, :]
            F_1_0 = flowOut[:, 2:, :, :]

            fCoeff = model.getFlowCoeff(trainFrameIndex, device)

            # Calculate intermediate flows
            F_t_0 = fCoeff[0] * F_0_1 + fCoeff[1] * F_1_0
            F_t_1 = fCoeff[2] * F_0_1 + fCoeff[3] * F_1_0

            # Get intermediate frames from the intermediate flows
            g_I0_F_t_0 = trainFlowBackWarp(I0, F_t_0)
            g_I1_F_t_1 = trainFlowBackWarp(I1, F_t_1)
            torch.cuda.empty_cache()
            # Calculate optical flow residuals and visibility maps
            intrpOut = ArbTimeFlowIntrp(
                torch.cat((I0, I1, F_0_1, F_1_0, F_t_1, F_t_0, g_I1_F_t_1,
                           g_I0_F_t_0),
                          dim=1))

            # Extract optical flow residuals and visibility maps
            F_t_0_f = intrpOut[:, :2, :, :] + F_t_0
            F_t_1_f = intrpOut[:, 2:4, :, :] + F_t_1
            V_t_0 = torch.sigmoid(intrpOut[:, 4:5, :, :])
            V_t_1 = 1 - V_t_0
            # torch.cuda.empty_cache()
            # Get intermediate frames from the intermediate flows
            g_I0_F_t_0_f = trainFlowBackWarp(I0, F_t_0_f)
            g_I1_F_t_1_f = trainFlowBackWarp(I1, F_t_1_f)
            # torch.cuda.empty_cache()
            wCoeff = model.getWarpCoeff(trainFrameIndex, device)
            torch.cuda.empty_cache()
            # Calculate final intermediate frame
            Ft_p = (wCoeff[0] * V_t_0 * g_I0_F_t_0_f + wCoeff[1] * V_t_1 *
                    g_I1_F_t_1_f) / (wCoeff[0] * V_t_0 + wCoeff[1] * V_t_1)

            # Loss
            recnLoss = L1_lossFn(Ft_p, IFrame)
            # torch.cuda.empty_cache()

            prcpLoss = MSE_LossFn(vgg16_conv_4_3(Ft_p), vgg16_conv_4_3(IFrame))
            # torch.cuda.empty_cache()
            warpLoss = L1_lossFn(g_I0_F_t_0, IFrame) + L1_lossFn(
                g_I1_F_t_1, IFrame) + L1_lossFn(
                    trainFlowBackWarp(I0, F_1_0), I1) + L1_lossFn(
                        trainFlowBackWarp(I1, F_0_1), I0)

            loss_smooth_1_0 = torch.mean(
                torch.abs(F_1_0[:, :, :, :-1] - F_1_0[:, :, :, 1:])
            ) + torch.mean(torch.abs(F_1_0[:, :, :-1, :] - F_1_0[:, :, 1:, :]))
            loss_smooth_0_1 = torch.mean(
                torch.abs(F_0_1[:, :, :, :-1] - F_0_1[:, :, :, 1:])
            ) + torch.mean(torch.abs(F_0_1[:, :, :-1, :] - F_0_1[:, :, 1:, :]))
            loss_smooth = loss_smooth_1_0 + loss_smooth_0_1
            # torch.cuda.empty_cache()
            # Total Loss - Coefficients 204 and 102 are used instead of 0.8 and 0.4
            # since the loss in paper is calculated for input pixels in range 0-255
            # and the input to our network is in range 0-1
            loss = 204 * recnLoss + 102 * warpLoss + 0.005 * prcpLoss + loss_smooth

            # Backpropagate

            loss.backward()
            optimizer.step()
            scheduler.step(loss.item())

            iLoss += loss.item()
            torch.cuda.empty_cache()
            # Validation and progress every `args.progress_iter` iterations
            if ((trainIndex % args.progress_iter) == args.progress_iter - 1):
                # Increment scheduler count
                scheduler.step(iLoss / args.progress_iter)

                end = time.time()

                psnr, vLoss, valImg = validate()
                optimizer.zero_grad()
                # torch.cuda.empty_cache()
                valPSNR[epoch].append(psnr)
                valLoss[epoch].append(vLoss)

                # Tensorboard
                itr = trainIndex + epoch * (len(trainloader))

                writer.add_scalars(
                    'Loss', {
                        'trainLoss': iLoss / args.progress_iter,
                        'validationLoss': vLoss
                    }, itr)
                writer.add_scalar('PSNR', psnr, itr)

                writer.add_image('Validation', valImg, itr)
                #####

                endVal = time.time()

                print(
                    " Loss: %0.6f  Iterations: %4d/%4d  TrainExecTime: %0.1f  ValLoss:%0.6f  ValPSNR: %0.4f  ValEvalTime: %0.2f LearningRate: %.1e"
                    % (iLoss / args.progress_iter, trainIndex,
                       len(trainloader), end - start, vLoss, psnr,
                       endVal - end, get_lr(optimizer)))

                # torch.cuda.empty_cache()
                cLoss[epoch].append(iLoss / args.progress_iter)
                iLoss = 0
                start = time.time()

        # Create checkpoint after every `args.checkpoint_epoch` epochs
        if (epoch % args.checkpoint_epoch) == args.checkpoint_epoch - 1:
            dict1 = {
                'Detail': "End to end Super SloMo.",
                'epoch': epoch,
                'timestamp': datetime.datetime.now(),
                'trainBatchSz': args.train_batch_size,
                'validationBatchSz': args.validation_batch_size,
                'learningRate': get_lr(optimizer),
                'loss': cLoss,
                'valLoss': valLoss,
                'valPSNR': valPSNR,
                'state_dictFC': flowComp.state_dict(),
                'state_dictAT': ArbTimeFlowIntrp.state_dict(),
                'state_optimizer': optimizer.state_dict(),
                'state_scheduler': scheduler.state_dict()
            }
            torch.save(
                dict1, args.checkpoint_dir + "/SuperSloMo" +
                str(checkpoint_counter) + ".ckpt")
            checkpoint_counter += 1
Example #4
0
###Initialize flow computation and arbitrary-time flow interpolation CNNs.

assert torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

###Load Datasets

# Channel wise mean calculated on adobe240-fps training dataset
mean = [0.429, 0.431, 0.397]
std = [1, 1, 1]
normalize = transforms.Normalize(mean=mean, std=std)
transform = transforms.Compose([transforms.ToTensor(), normalize])

trainset = dataloader.SuperSloMo(root=args.dataset_root + '/train',
                                 transform=transform,
                                 train=True)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=args.train_batch_size,
                                          shuffle=False)

print(trainset)

###Create transform to display image from tensor

negmean = [x * -1 for x in mean]
revNormalize = transforms.Normalize(mean=negmean, std=std)
TP = transforms.Compose([revNormalize, transforms.ToPILImage()])

###Utils